scholarly journals Repression by Suppressor of Hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo

2000 ◽  
Vol 14 (3) ◽  
pp. 377-388 ◽  
Author(s):  
Véronique Morel ◽  
François Schweisguth

Notch signal transduction appears to involve the ligand-induced intracellular processing of Notch, and the formation of a processed Notch-Suppressor of Hairless complex that binds DNA and activates the transcription of Notch target genes. This suggests that loss of eitherNotch or Su(H) activities should lead to similar cell fate changes. However, previous data indicate that, in theDrosophila blastoderm embryo, mesectoderm specification requires Notch but not Su(H) activity. The determination of the mesectodermal fate is specified by Single-minded (Sim), a transcription factor expressed in a single row of cells abutting the mesoderm. The molecular mechanisms by which the dorsoventral gradient of nuclear Dorsal establishes the single-cell wide territory of sim expression are not fully understood. We have found that Notch activity is required for simexpression in cellularizing embryos. In contrast, at this stage,Su(H) has a dual function. Su(H) activity was required to up-regulate sim expression in the mesectoderm, and to prevent the ectopic expression of sim dorsally in the neuroectoderm. We have shown that repression of simtranscription by Su(H) is direct and independent of Notchactivity. Conversely, activation of sim transcription by Notch requires the Su(H)-binding sites. Thus, Notch signalling appears to relieve the repression exerted by Su(H) and to up-regulate simtranscription in the mesectoderm. We propose a model in which repression by Su(H) and derepression by Notch are essential to allow for the definition of a single row of mesectodermal cells in the blastoderm embryo.

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3355-3362 ◽  
Author(s):  
L. Gabay ◽  
H. Scholz ◽  
M. Golembo ◽  
A. Klaes ◽  
B.Z. Shilo ◽  
...  

The induction of different cell fates along the dorsoventral axis of the Drosophila embryo requires a graded activity of the EGF receptor tyrosine kinase (DER). Here we have identified primary and secondary target genes of DER, which mediate the determination of discrete ventral cell fates. High levels of DER activation in the ventralmost cells trigger expression of the transcription factors encoded by ventral nervous system defective (vnd) and pointed P1 (pntPl). Concomitant with the induction of pntP1, high levels of DER activity lead to inactivation of the Yan protein, a transcriptional repressor of Pointed-target genes. These two antagonizing transcription factors subsequently control the expression of secondary target genes such as otd, argos and tartan. The simultaneous effects of the DER pathway on pntP1 induction and Yan inactivation may contribute to the definition of the border of the ventralmost cell fates.


Development ◽  
1997 ◽  
Vol 124 (19) ◽  
pp. 3683-3691 ◽  
Author(s):  
K. Hemavathy ◽  
X. Meng ◽  
Y.T. Ip

The initiation of mesoderm differentiation in the Drosophila embryo requires the gene products of twist and snail. In either mutant, the ventral cell invagination during gastrulation is blocked and no mesoderm-derived tissue is formed. One of the functions of Snail is to repress neuroectodermal genes and restrict their expressions to the lateral regions. The derepression of the neuroectodermal genes into the ventral region in snail mutant is a possible cause of defects in gastrulation and in mesoderm differentiation. To investigate such possibility, we analysed a series of snail mutant alleles. We found that different neuroectodermal genes respond differently in various snail mutant background. Due to the differential response of target genes, one of the mutant alleles, V2, that has reduced Snail function showed an intermediate phenotype. In V2 embryos, neuroectodermal genes, such as single-minded and rhomboid, are derepressed while ventral invagination proceeds normally. However, the differentiation of these invaginated cells into mesodermal lineage is disrupted. The results suggest that the establishment of mesodermal cell fate requires the proper restriction of neuroectodermal genes, while the ventral cell movement is independent of the expression patterns of these genes. Together with the data showing that the expression of some ventral genes disappear in snail mutants, we propose that Snail may repress or activate another set of target genes that are required specifically for gastrulation.


Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 335-346 ◽  
Author(s):  
M. Freeman ◽  
B.E. Kimmel ◽  
G.M. Rubin

In order to identify potential target genes of the rough homeodomain protein, which is known to specify some aspects of the R2/R5 photoreceptor subtype in the Drosophila eye, we have carried out a search for enhancer trap lines whose expression is rough-dependent. We crossed 101 enhancer traps that are expressed in the developing eye into a rough mutant background, and have identified seven lines that have altered expression patterns. One of these putative rough target genes is rhomboid, a gene known to be required for dorsoventral patterning and development of some of the nervous system in the embryo. We have examined the role of rhomboid in eye development and find that, while mutant clones have only a subtle phenotype, ectopic expression of the gene causes the non-neuronal mystery cells to be transformed into photoreceptors. We propose that rhomboid is a part of a partially redundant network of genes that specify photoreceptor cell fate.


Development ◽  
1998 ◽  
Vol 125 (2) ◽  
pp. 191-200 ◽  
Author(s):  
A. Sapir ◽  
R. Schweitzer ◽  
B.Z. Shilo

Previous work has demonstrated a role for the Drosophila EGF receptor (Torpedo/DER) and its ligand, Gurken, in the determination of anterioposterior and dorsoventral axes of the follicle cells and oocyte. The roles of DER in establishing the polarity of the follicle cells were examined further, by following the expression of DER-target genes. One class of genes (e.g. kekon) is induced by the DER pathway at all stages. Broad expression of kekon at the stage in which the follicle cells migrate posteriorly over the oocyte, demonstrates the capacity of the pathway to pattern all follicle cells except the ventral-most rows. This may provide the spatial coordinates for the ventral-most follicle cell fates. A second group of target genes (e.g. rhomboid (rho)) is induced only at later stages of oogenesis, and may require additional inputs by signals emanating from the anterior, stretch follicle cells. The function of Rho was analyzed by ectopic expression in the stretch follicle cells, and shown to induce a non-autonomous dorsalizing activity that is independent of Gurken. Rho thus appears to be involved in processing a DER ligand in the follicle cells, to pattern the egg chamber and allow persistent activation of the DER pathway during formation of the dorsal appendages.


2003 ◽  
Vol 31 (1) ◽  
pp. 292-297 ◽  
Author(s):  
K.U. Birkenkamp ◽  
P.J. Coffer

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting in nuclear export and inhibition of transcription. This signalling pathway was first identified in the nematode worm Caenorhabditis elegans, where it has a role in regulation of the life span of the organism. Studies have shown that this evolutionarily conserved signalling module has a role in regulation of both cell-cycle progression and cell survival in higher eukaryotes. These effects are co-ordinated by FOXO-mediated induction of a variety of specific target genes that are only now beginning to be identified. Interestingly, FOXO transcription factors appear to be able to regulate transcription through both DNA-binding-dependent and -independent mechanisms. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions to divide, differentiate or die.


2003 ◽  
Vol 23 (19) ◽  
pp. 6750-6758 ◽  
Author(s):  
Daniel R. Buchholz ◽  
Shao-Chung Victor Hsia ◽  
Liezhen Fu ◽  
Yun-Bo Shi

ABSTRACT The total dependence of amphibian metamorphosis on thyroid hormone (T3) provides a unique vertebrate model for studying the molecular mechanism of T3 receptor (TR) function in vivo. In vitro transcription and developmental expression studies have led to a dual function model for TR in amphibian development, i.e., TRs act as transcriptional repressors in premetamorphic tadpoles and as activators during metamorphosis. We examined molecular mechanisms of TR action in T3-induced metamorphosis by using dominant-negative receptors (dnTR) ubiquitously expressed in transgenic Xenopus laevis. We showed that T3-induced activation of T3 target genes and morphological changes are blocked in dnTR transgenic animals. By using chromatin immunoprecipitation, we show that dnTR bound to target promoters, which led to retention of corepressors and continued histone deacetylation in the presence of T3. These results thus provide direct in vivo evidence for the first time for a molecular mechanism of altering gene expression by a dnTR. The correlation between dnTR-mediated gene repression and inhibition of metamorphosis also supports a key aspect of the dual function model for TR in development: during T3-induced metamorphosis, TR functions as an activator via release of corepressors and promotion of histone acetylation and gene activation.


2021 ◽  
Author(s):  
Lingyan Xing ◽  
Rui Chai ◽  
jiaqi wang ◽  
Jiaqi Lin ◽  
Hanyang Li ◽  
...  

The pMN domain is a restricted domain in the ventral spinal cords, defined by the expression of olig2 gene. The fate determination of pMN progenitors is highly temporally and spatially regulated, with motor neurons and oligodendrocyte progenitor cells (OPCs) developing sequentially. Insight into the heterogeneity and molecular programs of pMN progenitors is currently lacking. With the zebrafish model, we identified multiple states of neural progenitors using single-cell sequencing: proliferating progenitors, common progenitors for both motor neurons and OPCs, and restricted precursors for either motor neurons or OPCs. We found specific molecular programs for neural progenitor fate transition, and manipulations of representative genes in the motor neuron or OPC lineage confirmed their critical role in cell fate determination. The transcription factor NPAS3 is necessary for the development of the OPC lineage and can interact with many known genes associated with schizophrenia. Deciphering progenitor heterogeneity and molecular mechanisms for these transitions will elucidate the formation of complex neuron-glia networks in the central nervous system during development, and understand the basis of neurodevelopmental disorders.


2021 ◽  
Author(s):  
Haoli Ying ◽  
Ruolang Pan ◽  
Ye Chen

Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering owing to their differentiation potential in various cell types. The therapeutic utility of MSCs hinges upon our understanding of the molecular mechanisms involved in cellular fate decisions. Thus, the elucidation of the regulation of MSC differentiation has attracted increasing attention in recent years. A variety of external cues contribute to the process of MSC differentiation, including chemical, physical, and biological factors. Among the multiple factors that are known to affect cell fate decisions, the epigenetic regulation of MSC differentiation has become a research hotspot. In this chapter, we summarize recent progress in the determination of the effects of epigenetic modification on the multilineage differentiation of MSCs.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Wenwen Geng ◽  
Haiyun Song ◽  
Qianqian Zhao ◽  
Ke Dong ◽  
Qian Pu ◽  
...  

MicroRNAs (miRNAs) have been identified as negative posttranscriptional regulators of target genes and are involved directly in the pathological processes of tumors, including drug resistance. However, the exact function of miR-520h in breast cancer remains poorly understood. The aim of this study was to investigate the molecular mechanisms of miR-520h in paclitaxel resistance in the MCF-7 breast cancer cell line. Ectopic expression of miR-520h could promote the proliferation of breast cancer cells and inhibit paclitaxel-induced cell apoptosis. Inhibiting the expression of miR-520h could enhance the sensitivity to paclitaxel in paclitaxel-resistant MCF-7/Taxol cells. Furthermore, luciferase reporter assays showed that OTUD3 was a direct target of miR-520h. OTUD3 plays a necessary role in the paclitaxel resistance effect of miR-520h, and cotreatment with a miR-520h inhibitor and OTUD3 overexpression significantly enhanced MCF-7 cell sensitivity to paclitaxel. Moreover, miR-520h substantially inhibited the protein expression of PTEN via OTUD3 and subsequently affected downstream p-AKT pathway activity. In a clinical study, we also found that high miR-520h expression was associated with more aggressive pathological characteristic and poor prognosis. Therefore, our findings showed that miR-520h targeted the OTUD3-PTEN axis to drive paclitaxel resistance, and this miR might be an important potential target for breast cancer treatment.


2000 ◽  
Vol 20 (14) ◽  
pp. 5087-5095 ◽  
Author(s):  
Kirugaval Hemavathy ◽  
Siradanahalli C. Guru ◽  
John Harris ◽  
J. Don Chen ◽  
Y. Tony Ip

ABSTRACT Snail/Slug family proteins have been identified in diverse species of both vertebrates and invertebrates. The proteins contain four to six zinc fingers and function as DNA-binding transcriptional regulators. Various members of the family have been demonstrated to regulate cell movement, neural cell fate, left-right asymmetry, cell cycle, and apoptosis. However, the molecular mechanisms of how these regulators function and the target genes involved are largely unknown. In this report, we demonstrate that human Slug (hSlug) is a repressor and modulates both activator-dependent and basal transcription. The repression depends on the C-terminal DNA-binding zinc fingers and on a separable repression domain located in the N terminus. This domain may recruit histone deacetylases to modify the chromatin and effect repression. Protein localization study demonstrates that hSlug is present in discrete foci in the nucleus. This subnuclear pattern does not colocalize with the PML foci or the coiled bodies. Instead, the hSlug foci overlap extensively with areas of the SC-35 staining, some of which have been suggested to be sites of active splicing or transcription. These results lead us to postulate that hSlug localizes to target promoters, where activation occurs, to repress basal and activator-mediated transcription.


Sign in / Sign up

Export Citation Format

Share Document