scholarly journals Wave functions for high-symmetry, thin microstrip antennas, and two-dimensional quantum boxes

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Joseph R. Rain ◽  
PeiYu Cai ◽  
Alexander Baekey ◽  
Matthew A. Reinhard ◽  
Roman I. Vasquez ◽  
...  
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Berthold Jäck ◽  
Fabian Zinser ◽  
Elio J. König ◽  
Sune N. P. Wissing ◽  
Anke B. Schmidt ◽  
...  

Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 53
Author(s):  
Jack C. Straton

Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers multiplied by an arbitrary function of xy/(x+y) multiplying various combinations of exponentials. In some cases these exponentials arise directly from transition-amplitudes involving products of plane waves, hydrogenic wave functions, and Yukawa and/or Coulomb potentials. In other cases these exponentials arise from Gaussian transforms of such functions.


VLSI Design ◽  
1998 ◽  
Vol 8 (1-4) ◽  
pp. 489-493
Author(s):  
H. Kosina ◽  
C. Troger

Nonparabolicity effects in two-dimensional electron systems are quantitatively analyzed. A formalism has been developed which allows to incorporate a nonparabolic bulk dispersion relation into the Schrödinger equation. As a consequence of nonparabolicity the wave functions depend on the in-plane momentum. Each subband is parametrized by its energy, effective mass and a subband nonparabolicity coefficient. The formalism is implemented in a one-dimensional Schrödinger-Poisson solver which is applicable both to silicon inversion layers and heterostructures.


1993 ◽  
Vol 08 (20) ◽  
pp. 1925-1941
Author(s):  
ULF H. DANIELSSON

In this work the quantum theory of two-dimensional dilaton black holes is studied using the Wheeler-De Witt equation. The solutions correspond to wave functions of the black hole. It is found that for an observer inside the horizon, there are uncertainty relations for the black hole mass and a parameter in the metric determining the Hawking flux. Only for a particular value of this parameter can both be known with arbitrary accuracy. In the generic case there is instead a relation that is very similar to the so-called string uncertainty relation.


2020 ◽  
Author(s):  
Federico Orlando ◽  
Guido Fratesi ◽  
Giovanni Onida ◽  
Simona Achilli

We analyse the spinterface formed by a C60 molecular layer on a Fe(001) surface covered by a two-dimensional Cr4O5 layer. We consider different geometries, by combining the high symmetry adsorption sites of the surface with three possible orientations of the molecules in a fully relaxed Density Functional Theory calculation.We show that the local hybridization between the electronic states of the Cr4O5 layer and those of the organic molecules is able to modify the magnetic coupling of the Cr atoms. Both the intra-layer and the inter-layer magnetic interaction is indeed driven by O atoms of the two-dimensional oxide. We demonstrate that the C60 adsorption on the energetically most stable site turns the ferromagnetic intra-layer coupling into an antiferromagnetic one, and that antiferromagnetic to ferromagnetic switching and spin patterning of the substrate are made possible by adsorption on other sites.


Sign in / Sign up

Export Citation Format

Share Document