Quantum computers and intractable (NP-complete) computing problems

1993 ◽  
Vol 48 (1) ◽  
pp. 116-119 ◽  
Author(s):  
Vladimír Černý
2021 ◽  
Author(s):  
Siyuan Chen ◽  
Peng Zeng ◽  
Kim-Kwang Raymond Choo

Abstract Blind signature is an important cryptographic primitive with widespread applications in secure e-commerce, for example to guarantee participants’ anonymity. Existing blind signature schemes are mostly based on number-theoretic hard problems, which have been shown to be solvable with quantum computers. The National Institute of Standards and Technology (NIST) began in 2017 to specify a new standard for digital signatures by selecting one or more additional signature algorithms, designed to be secure against attacks carried out using quantum computers. However, none of the third-round candidate algorithms are code-based, despite the potential of code-based signature algorithms in resisting quantum computing attacks. In this paper, we construct a new code-based blind signature (CBBS) scheme as an alternative to traditional number-theoretic based schemes. Specifically, we first extend Santoso and Yamaguchi’s three pass identification scheme to a concatenated version (abbreviated as the CSY scheme). Then, we construct our CBBS scheme from the CSY scheme. The security of our CBBS scheme relies on hardness of the syndrome decoding problem in coding theory, which has been shown to be NP-complete and secure against quantum attacks. Unlike Blazy et al.’s CBBS scheme which is based on a zero-knowledge protocol with cheating probability $2/3$, our CBBS scheme is based on a zero-knowledge protocol with cheating probability $1/2$. The lower cheating probability would reduce the interaction rounds under the same security level and thus leads to a higher efficiency. For example, to achieve security level $2^{-82}$, the signature size in our CBBS scheme is $1.63$ MB compared to $3.1$ MB in Blazy et al.’s scheme.


2010 ◽  
Vol 10 (1&2) ◽  
pp. 1-16
Author(s):  
C.R. Laumann ◽  
R. Moessner ◽  
A. Scarddichio ◽  
S.L. Sondhi

Alongside the effort underway to build quantum computers, it is important to better understand which classes of problems they will find easy and which others even they will find intractable. We study random ensembles of the QMA$_1$-complete quantum satisfiability (QSAT) problem introduced by Bravyi \cite{Bravyi:2006p4315}. QSAT appropriately generalizes the NP-complete classical satisfiability (SAT) problem. We show that, as the density of clauses/projectors is varied, the ensembles exhibit quantum phase transitions between phases that are satisfiable and unsatisfiable. Remarkably, almost all instances of QSAT for \emph{any} hypergraph exhibit the same dimension of the satisfying manifold. This establishes the QSAT decision problem as equivalent to a, potentially new, graph theoretic problem and that the hardest typical instances are likely to be localized in a bounded range of clause density.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao Xiao ◽  
Shahin Nazarian ◽  
Paul Bogdan

AbstractQuantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization to automatically generate quantum programs from high-level languages subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently generate a program with a lower cost from the high dimensional program space. We also realize that hyperparameters used in stochastic synthesis play a significant role in determining the optimal program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate a suitable quantum program.


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiao Yuan ◽  
Syed M Assad ◽  
Jayne Thompson ◽  
Jing Yan Haw ◽  
Vlatko Vedral ◽  
...  

AbstractIn general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level, they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At the quantum level such problems can be resolved through the Deutschian formalism, however this induces radical benefits—from cloning unknown quantum states to solving problems intractable to quantum computers. Instinctively, one expects these benefits to vanish if causality is respected. Here we show that in harnessing entanglement, we can efficiently solve NP-complete problems and clone arbitrary quantum states—even when all time-travelling systems are completely isolated from the past. Thus, the many defining benefits of Deutschian closed timelike curves can still be harnessed, even when causality is preserved. Our results unveil a subtle interplay between entanglement and general relativity, and significantly improve the potential of probing the radical effects that may exist at the interface between relativity and quantum theory.


2021 ◽  
Author(s):  
Ahmed Drissi

Quantum computers are distinguished by their enormous storage capacity and relatively high computing speed. Among the cryptosystems of the future, the best known and most studied which will resist when using this kind of computer are cryptosystems based on error-correcting codes. The use of problems inspired by the theory of error-correcting codes in the design of cryptographic systems adds an alternative to cryptosystems based on number theory, as well as solutions to their vulnerabilities. Their security is based on the problem of decoding a random code that is NP-complete. In this chapter, we will discuss the cryptographic properties of error-correcting codes, as well as the security of cryptosystems based on code theory.


2018 ◽  
Author(s):  
Rajendra K. Bera

It now appears that quantum computers are poised to enter the world of computing and establish its dominance, especially, in the cloud. Turing machines (classical computers) tied to the laws of classical physics will not vanish from our lives but begin to play a subordinate role to quantum computers tied to the enigmatic laws of quantum physics that deal with such non-intuitive phenomena as superposition, entanglement, collapse of the wave function, and teleportation, all occurring in Hilbert space. The aim of this 3-part paper is to introduce the readers to a core set of quantum algorithms based on the postulates of quantum mechanics, and reveal the amazing power of quantum computing.


2019 ◽  
Vol 8 (4) ◽  
pp. 9461-9464

Current quantum computer simulation strategies are inefficient in simulation and their realizations are also failed to minimize those impacts of the exponential complexity for simulated quantum computations. We proposed a Quantum computer simulator model in this paper which is a coordinated Development Environment – QuIDE (Quantum Integrated Development Environment) to support the improvement of algorithm for future quantum computers. The development environment provides the circuit diagram of graphical building and flexibility of source code. Analyze the complexity of algorithms shows the performance results of the simulator and used for simulation as well as result of its deployment during simulation


Sign in / Sign up

Export Citation Format

Share Document