Viscosity of entangled polystyrene thin film melts: Film thickness dependence

2002 ◽  
Vol 65 (3) ◽  
Author(s):  
Jean-Loup Masson ◽  
Peter F. Green
Author(s):  
Joanna E. Bechtel ◽  
David B. Bogy

The lubricant applied to the disk in a hard drive is a critical component for head-disk interface reliability. In Heat Assisted Magnetic Recording (HAMR), the heat supplied to the disk by the laser will add new thermal considerations to lubricant performance. Investigations into how the lubricant behaves at the small time and length scales seen in HAMR systems need to be conducted numerically. Published works on HAMR lubricant modeling have considered only the van der Waals contribution to disjoining pressure, commonly called the dispersive component, and do not consider the film thickness dependence of viscosity. However, lubricants with reactive end groups such as Fomblin Zdol are widely used, and such simple disjoining pressure and viscosity models do not capture certain lubricant behavior. We have developed a simulation tool that incorporates film thickness dependencies of viscosity and polar and dispersive disjoining pressure into a continuum lubrication model. We investigate the effect of initial thickness on lubricant flow and evaporation under HAMR write conditions considering both components of disjoining pressure and thin-film viscosity. Simulation results indicate the effect of including polar disjoining pressure depends on the initial lubricant thickness. The inclusion of viscosity thickness dependence does not affect simulation results under scanning laser conditions but will be important in reflow simulations.


Shinku ◽  
2003 ◽  
Vol 46 (3) ◽  
pp. 284-286 ◽  
Author(s):  
Qin JIANG ◽  
Goro SAWA ◽  
Yoshiyuki UCHIDA ◽  
Kenzo KOJIMA ◽  
Asao OHASHI ◽  
...  

1981 ◽  
Vol 42 (C6) ◽  
pp. C6-825-C6-827
Author(s):  
P. Taborek ◽  
M. Sinvani ◽  
M. Weimer ◽  
D. Goodstein

Carbon ◽  
2021 ◽  
Vol 178 ◽  
pp. 506-514
Author(s):  
Meiyu He ◽  
Jiayue Han ◽  
Xingwei Han ◽  
Jun Gou ◽  
Ming Yang ◽  
...  

Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2020 ◽  
Vol 102 (21) ◽  
Author(s):  
Stephan Geprägs ◽  
Björn Erik Skovdal ◽  
Monika Scheufele ◽  
Matthias Opel ◽  
Didier Wermeille ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4056
Author(s):  
José Javier Imas ◽  
Carlos R. Zamarreño ◽  
Ignacio del Villar ◽  
Ignacio R. Matías

A fiber Bragg grating patterned on a SnO2 thin film deposited on the flat surface of a D-shaped polished optical fiber is studied in this work. The fabrication parameters of this structure were optimized to achieve a trade-off among reflected power, full width half maximum (FWHM), sensitivity to the surrounding refractive index (SRI), and figure of merit (FOM). In the first place, the influence of the thin film thickness, the cladding thickness between the core and the flat surface of the D-shaped fiber (neck), and the length of the D-shaped zone over the reflected power and the FWHM were assessed. Reflected peak powers in the range from −2 dB to −10 dB can be easily achieved with FWHM below 100 pm. In the second place, the sensitivity to the SRI, the FWHM, and the FOM were analyzed for variations of the SRI in the 1.33–1.4 range, the neck, and the thin-film thickness. The best sensitivities theoretically achieved for this device are next to 40 nm/RIU, while the best FOM has a value of 114 RIU−1.


2019 ◽  
Vol 682 ◽  
pp. 109-120 ◽  
Author(s):  
Wjatscheslaw Sakiew ◽  
Stefan Schrameyer ◽  
Marco Jupé ◽  
Philippe Schwerdtner ◽  
Nick Erhart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document