scholarly journals Alignment of sample position and rotation during in situ synchrotron X-ray micro-diffraction experiments using a Laue cross-correlation approach

2019 ◽  
Vol 52 (5) ◽  
pp. 1119-1127 ◽  
Author(s):  
Chenglu Zhang ◽  
Yubin Zhang ◽  
Guilin Wu ◽  
Wenjun Liu ◽  
Ruqing Xu ◽  
...  

Laue micro-diffraction has proven to be able to reveal material properties at the sub-grain scale for many polycrystalline materials and is now routinely available at several synchrotron facilities, providing an approach for nondestructive three-dimensional probing of the microstructures and mechanical states of materials. However, for in situ experiments, maintaining the positioning of the sample throughout the experiment, to achieve a good alignment of the characterized volumes, is a challenging issue. The aim of the present work is to address this problem by developing an approach based on digital image correlation of focused-beam Laue diffraction patterns. The method uses small changes in the diffraction signal as a focused X-ray beam is scanned over a surface region to allow corrections to be made for both sample lateral movement and rotation. The method is demonstrated using a tensile deformation experiment on an Al sample with 2.5 µm average grain size. The results demonstrate an accuracy of 0.5 µm for sample position registration and a precision in sample rotation of ∼0.01°. The proposed method is fast to implement and does not require the use of additional surface markers.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Karim Louca ◽  
Hamidreza Abdolvand ◽  
Charles Mareau ◽  
Marta Majkut ◽  
Jonathan Wright

AbstractThe mechanical response of polycrystalline materials to an externally applied load and their in-service performance depend on the local load partitioning among the constituent crystals. In hexagonal close-packed polycrystals such load partitioning is significantly affected by deformation twinning. Here we report in-situ compression-tension experiments conducted on magnesium specimens to measure the evolution of grain resolved tensorial stresses and formation and annihilation of twins. More than 13000 grains and 1300 twin-parent pairs are studied individually using three-dimensional synchrotron X-ray diffraction. It is shown that at the early stages of plasticity, the axial stress in twins is higher than that of parents, yet twins relax with further loading. While a sign reversal is observed for the resolved shear stress (RSS) acting on the twin habit plane in the parent, the sign of RSS within the majority of twins stays unchanged until twin annihilation during the load reversal. The variations of measured average stresses across parents and twins are also investigated.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2461 ◽  
Author(s):  
Qiang Zhu ◽  
Gang Chen ◽  
Chuanjie Wang ◽  
Heyong Qin ◽  
Peng Zhang

Nickel-based superalloys have become key materials for turbine disks and other aerospace components due to their excellent mechanical properties at high temperatures. Mechanical properties of nickel-based superalloys are closely related to their microstructures. Various heat treatment processes were conducted to obtain the desired microstructures of a nickel-based superalloy in this study. The effect of the initial microstructures on the tensile deformation and fracture behaviors was investigated via in situ digital image correlation (DIC) and synchrotron radiation X-ray tomography (SRXT). The results showed that the size and volume fraction of γ″ and γ′ phases increased with the aging time. The yield strength and the ultimate tensile strength increased due to the precipitation strengthening at the expense of ductility. The surface strain analysis showed severely inhomogeneous deformation. The local strains at the edge of specimens were corresponded to higher void densities. The fracture of carbides occurred owing to the stress concentration, which was caused by the dislocation accumulation. The fracture mode was dimple coalescence ductile fracture.


Author(s):  
T. Yaguchi ◽  
M. Konno ◽  
T. Kamino ◽  
M. Ogasawara ◽  
K. Kaji ◽  
...  

Abstract A technique for preparation of a pillar shaped sample and its multi-directional observation of the sample using a focused ion beam (FIB) / scanning transmission electron microscopy (STEM) system has been developed. The system employs an FIB/STEM compatible sample rotation holder with a specially designed rotation mechanism, which allows the sample to be rotated 360 degrees [1-3]. This technique was used for the three dimensional (3D) elemental mapping of a contact plug of a Si device in 90 nm technology. A specimen containing a contact plug was shaped to a pillar sample with a cross section of 200 nm x 200 nm and a 5 um length. Elemental analysis was performed with a 200 kV HD-2300 STEM equipped with the EDAX genesis Energy dispersive X-ray spectroscopy (EDX) system. Spectrum imaging combined with multivariate statistical analysis (MSA) [4, 5] was used to enhance the weak X-ray signals of the doped area, which contain a low concentration of As-K. The distributions of elements, especially the dopant As, were successfully enhanced by MSA. The elemental maps were .. reconstructed from the maps.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1615
Author(s):  
Qiong Li ◽  
Jürgen Gluch ◽  
Zhongquan Liao ◽  
Juliane Posseckardt ◽  
André Clausner ◽  
...  

Fossil frustules of Ellerbeckia and Melosira were studied using laboratory-based nano X-ray tomography (nano-XCT), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). Three-dimensional (3D) morphology characterization using nondestructive nano-XCT reveals the continuous connection of fultoportulae, tube processes and protrusions. The study confirms that Ellerbeckia is different from Melosira. Both genera reveal heavily silicified frustules with valve faces linking together and forming cylindrical chains. For this cylindrical architecture of both genera, valve face thickness, mantle wall thickness and copulae thickness change with the cylindrical diameter. Furthermore, EDS reveals that these fossil frustules contain Si and O only, with no other elements in the percentage concentration range. Nanopores with a diameter of approximately 15 nm were detected inside the biosilica of both genera using TEM. In situ micromechanical experiments with uniaxial loading were carried out within the nano-XCT on these fossil frustules to determine the maximal loading force under compression and to describe the fracture behavior. The fracture force of both genera is correlated to the dimension of the fossil frustules. The results from in situ mechanical tests show that the crack initiation starts either at very thin features or at linking structures of the frustules.


2007 ◽  
Vol 29-30 ◽  
pp. 143-146 ◽  
Author(s):  
Aamir Mukhtar ◽  
De Liang Zhang ◽  
C. Kong ◽  
P. R. Munroe

Cu-(2.5 or 5.0vol.%)Al2O3 nanocomposite balls and granules and Cu-(2.5vol.% or 5.0vol.%)Pb alloy powder were prepared by high energy mechanical milling (HEMM) of mixtures of Cu and either Al2O3 or Pb powders. It was observed that with the increase of the content of Al2O3 nanoparticles from 2.5vol.% to 5vol.% in the powder mixture, the product of HEMM changed from hollow balls into granules and the average grain size and microhardness changed from approximately 130nm and 185HV to 100nm and 224HV, respectively. On the other hand, HEMM of Cu–(2.5 or 5.0vol.%) Pb powder mixtures under the same milling conditions failed to consolidate the powder in-situ. Instead, it led to formation of nanostructured fine powders with an average grain size of less than 50nm. Energy dispersive X-ray mapping showed homogenous distribution of Pb in the powder particles in Cu–5vol.%Pb alloy powder produced after 12 hours of milling. With the increase of the Pb content from 2.5 to 5.0 vol.%, the average microhardness of the Cu-Pb alloy powder particles increases from 270 to 285 HV. The mechanisms of the effects are briefly discussed.


2014 ◽  
Vol 53 (17) ◽  
pp. 4460-4464 ◽  
Author(s):  
Jiajun Wang ◽  
Yu-chen Karen Chen-Wiegart ◽  
Jun Wang
Keyword(s):  

2022 ◽  
Vol 93 (1) ◽  
pp. 013703
Author(s):  
Guang Yang ◽  
Halil Tetik ◽  
Johanna Nelson Weker ◽  
Xianghui Xiao ◽  
Shuting Lei ◽  
...  

2018 ◽  
Vol 2 (4) ◽  
pp. 24 ◽  
Author(s):  
Anton Davydok ◽  
Thomas Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed by an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. Three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves and were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire was visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion was detected. Bending and torsion angles were quantified from the high-resolution diffraction data.


Nano Energy ◽  
2016 ◽  
Vol 27 ◽  
pp. 147-156 ◽  
Author(s):  
Chaojiang Niu ◽  
Xiong Liu ◽  
Jiashen Meng ◽  
Lin Xu ◽  
Mengyu Yan ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1138-C1138
Author(s):  
Chiaki Tsuboi ◽  
Kazuki Aburaya ◽  
Shingo Higuchi ◽  
Fumiko Kimura ◽  
Masataka Maeyama ◽  
...  

We have developed magnetically oriented microcrystal array (MOMA) technique that enables single crystal X-ray diffraction analyses from microcrystalline powder. In this method, microcrystals suspended in a UV-curable monomer matrix are there-dimensionally aligned by special rotating magnetic field, followed by consolidation of the matrix by photopolymerization. From thus achieved MOMAs, we have been succeeded in crystal structure analysis for some substances [1, 2]. Though MOMA method is an effective technique, it has some problems as follows: in a MOMA, the alignment is deteriorated during the consolidation process. In addition, the sample microcrystals cannot be recovered from a MOMA. To overcome these problems, we performed an in-situ X-ray diffraction measurement using a three-dimensional magnetically oriented microcrystal suspension (3D MOMS) of L-alanine. An experimental setting of the in-situ X-ray measurement of MOMS is schematically shown in the figure. L-alanine microcrystal suspension was poured into a glass capillary and placed on the rotating unit equipped with a pair of neodymium magnets. Rotating X-ray chopper with 10°-slits was placed between the collimator and the suspension. By using this chopper, it was possible to expose the X-ray only when the rotating MOMS makes a specific direction with respect to the impinging X-ray. This has the same effect as the omega oscillation in conventional single crystal measurement. A total of 22 XRD images of 10° increments from 0° to 220° were obtained. The data set was processed by using conventional software to obtain three-dimensional molecular structure of L-alanine. The structure is in good agreement with that reported for the single crystal. R1 and wR2 were 6.53 and 17.4 %, respectively. RMSD value between the determined molecular structure and the reported one was 0.0045 Å. From this result, we conclude that this method can be effective and practical to be used widely for crystal structure analyses.


Sign in / Sign up

Export Citation Format

Share Document