scholarly journals Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors

2016 ◽  
Vol 23 (6) ◽  
pp. 1333-1347 ◽  
Author(s):  
John P. Sutter ◽  
Simon G. Alcock ◽  
Yogesh Kashyap ◽  
Ioana Nistea ◽  
Hongchang Wang ◽  
...  

Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors <5 nm r.m.s. introduce damagingly large striations into the reflected beam. To counteract such problems, surface modifications with alternating concave and convex curvature on equal segments were polished onto the surface of non-active mirrors of fixed curvature. Such optics are useful for providing a fixed size of X-ray beam, but do not provide the adaptability required by many experiments. In contrast, deformable piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 169 ◽  
Author(s):  
Mahbubur Rahman ◽  
Pasan Hettiarachchi ◽  
Vernon Cooray ◽  
Joseph Dwyer ◽  
Vladimir Rakov ◽  
...  

We present observations of X-rays from laboratory sparks created in the air at atmospheric pressure by applying an impulse voltage with long (250 µs) rise-time. X-ray production in 35 and 46 cm gaps for three different electrode configurations was studied. The results demonstrate, for the first time, the production of X-rays in gaps subjected to switching impulses. The low rate of rise of the voltage in switching impulses does not significantly reduce the production of X-rays. Additionally, the timing of the X-ray occurrence suggests the possibility that the mechanism of X-ray production by sparks is related to the collision of streamers of opposite polarity.


1996 ◽  
Vol 11 (5) ◽  
pp. 1169-1178 ◽  
Author(s):  
Kentaro Suzuya ◽  
Michihiro Furusaka ◽  
Noboru Watanabe ◽  
Makoto Osawa ◽  
Kiyohito Okamura ◽  
...  

Mesoscopic structures of SiC fibers produced from polycarbosilane by different methods were studied by diffraction and small-angle scattering of neutrons and x-rays. Microvoids of a size of 4–10 Å in diameter have been observed for the first time by neutron scattering in a medium momentum transfer range (Q = 0.1–1.0 Å−1). The size and the volume fraction of β–SiC particles were determined for fibers prepared at different heat-treatment temperatures. The results show that wide-angle neutron scattering measurements are especially useful for the study of the mesoscopic structure of multicomponent materials.


2013 ◽  
Vol 21 (2) ◽  
pp. 7-7
Author(s):  
Charles Lyman

Using X rays to produce magnified images of objects has been a goal for 150 years. Ever since Ernst Abbe declared in 1873 that light microscope resolution was limited by the wavelength of light, the search was on for a microscopy medium with a wavelength shorter than visible light (<500 nm). When Roentgen discovered X rays in 1895, it was thought that the new medium may have been found. Soon it was clear, however, that it was not easy to construct a physical lens for X rays because the rays penetrated all lens construction materials. X-ray “radiography images” of a few times magnification were possible but only as projection images, formed as X rays from millimeter-sized sources traveled in straight lines through the specimen to be captured on film. Unfortunately, even in the best cases, useful magnification was limited by the relatively large “point source” of X rays and the large grain size of X-ray film (both about 0.1–1.0 mm).


1987 ◽  
Vol 93 ◽  
pp. 485-485
Author(s):  
H. Steinle ◽  
W. Pietsck

AbstractDuring the August 1983 outburst of the old nova GK Persei observations with EXOSAT showed for the first time a 351 second periodicity in X-rays.Our fast photometry (U(B)V with 25 sec time resolution) was made at the end of the outburst in the nights of September 29 , and October 1–3 , using the 2.2 meter telescope at Calar Alto (Spain).Optical variations up to 10% in U and 4% in V with periodicities in the range 350 to 360 seconds were found, lasting only for few cycles.A comparison with the extrapolated prediction of the X-ray maxima did not show a coincidence, but rather an anticoincidence in several cases. This supports a model of reprocessed X-rays at the inner edge of an accretion disk.


2019 ◽  
Vol 486 (4) ◽  
pp. 4863-4879 ◽  
Author(s):  
Ali Takey ◽  
Florence Durret ◽  
Isabel Márquez ◽  
Amael Ellien ◽  
Mona Molham ◽  
...  

ABSTRACT We present X-ray and optical properties of the optically confirmed galaxy cluster sample from the 3XMM/SDSS Stripe 82 cluster survey. The sample includes 54 galaxy clusters in the redshift range of 0.05–1.2, with a median redshift of 0.36. We first present the X-ray temperature and luminosity measurements that are used to investigate the X-ray luminosity–temperature relation. The slope and intercept of the relation are consistent with those published in the literature. Then, we investigate the optical properties of the cluster galaxies including their morphological analysis and the galaxy luminosity functions (GLFs). The morphological content of cluster galaxies is investigated as a function of cluster mass and distance from the cluster centre. No strong variation of the fraction of early- and late-type galaxies with cluster mass is observed. The fraction of early-type galaxies as a function of cluster radius varies as expected. The individual GLFs of red sequence galaxies were studied in the five ugriz bands for 48 clusters. The GLFs were then stacked in three mass bins and two redshift bins. Twenty clusters of the present sample are studied for the first time in X-rays, and all are studied for the first time in the optical range. Altogether, our sample appears to have X-ray and optical properties typical of ‘average’ cluster properties.


Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Ka-Wah Wong ◽  
Rodrigo S. Nemmen ◽  
Jimmy A. Irwin ◽  
Dacheng Lin

The nearby M87 hosts an exceptional relativistic jet. It has been regularly monitored in radio to TeV bands, but little has been done in hard X-rays ≳10 keV. For the first time, we have successfully detected hard X-rays up to 40 keV from its X-ray core with joint Chandra and NuSTAR observations, providing important insights to the X-ray origins: from the unresolved jet or the accretion flow. We found that the hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain very-high-energy γ -ray emission above a GeV. We discuss recent models to understand these high energy emission processes.


2018 ◽  
Vol 619 ◽  
pp. A16
Author(s):  
C. Vignali ◽  
P. Severgnini ◽  
E. Piconcelli ◽  
G. Lanzuisi ◽  
R. Gilli ◽  
...  

Context. The search for heavily obscured active galactic nuclei has been revitalized in the last five years by NuSTAR, which has provided a good census and spectral characterization of a population of such objects, mostly at low redshift, thanks to its enhanced sensitivity above 10 keV compared to previous X-ray facilities, and its hard X-ray imaging capabilities. Aims. We aim at demonstrating how NGC 2785, a local (z = 0.009) star-forming galaxy, is responsible, in virtue of its heavily obscured active nucleus, for significant contamination in the non-imaging BeppoSAX/PDS data of the relatively nearby (≈17′) quasar IRAS 09104+4109 (z = 0.44), which was originally mis-classified as Compton thick. Methods. We analyzed ≈71 ks NuSTAR data of NGC 2785 using the MYTorus model and provided a physical description of the X-ray properties of the source for the first time. Results. We found that NGC 2785 hosts a heavily obscured (NH ≈ 3 × 1024 cm−2) nucleus. The intrinsic X-ray luminosity of the source, once corrected for the measured obscuration (L2−10keV ≈ 1042 erg s−1), is consistent within a factor of a few with predictions based on the source mid-infrared flux using widely adopted correlations from the literature. Conclusions. Based on NuSTAR data and previous indications from the Neil Gehrels Swift Observatory (BAT instrument), we confirm that NGC 2785, because of its hard X-ray emission and spectral shape, was responsible for at least one third of the 20–100 keV emission observed using the PDS instrument onboard BeppoSAX, originally completely associated with IRAS 09104+4109. Such emission led to the erroneous classification of this source as a Compton-thick quasar, while it is now recognized as Compton thin.


Author(s):  
Ahmed Hashem El Fiky ◽  

The COVID-19 will take place for the first time in December 2019 in Wuhan, China. After that, the virus spread all over the world, with over 4.7 million confirmed cases and over 315000 deaths as of the time of writing this report. Radiologists can employ machine learning algorithms developed on radiography pictures as a decision support mechanism to help them speed up the diagnostic process. The goal of this study is to conduct a quantitative evaluation of six off-the-shelf convolutional neural networks (CNNs) for COVID-19 X-ray image analysis. Due to the limited amount of images available for analysis, the CNN transfer learning approach was used. We also developed a simple CNN architecture with a modest number of parameters that does a good job of differentiating COVID-19 from regular X-rays. in this paper, we are used large dataset which contained CXR images of normal patients and patients with COVID-19. the number of CXR images for normal patients are 10,192 image and the number of CXR images for COVID-19 patients are 3,616 images. The results of experiments show the effectiveness and robustness of Deep-COVID-19 and pretrained models like VGG16, VGG19, and MobileNets. Our proposed Model Deep-COVID-19 achieved over 94.5% accuracy.


Sign in / Sign up

Export Citation Format

Share Document