The optical stretcher as a tool for single-particle X-ray imaging and diffraction

2018 ◽  
Vol 25 (4) ◽  
pp. 1196-1205 ◽  
Author(s):  
Jan-David Nicolas ◽  
Johannes Hagemann ◽  
Michael Sprung ◽  
Tim Salditt

For almost half a century, optical tweezers have successfully been used to micromanipulate micrometre and sub-micrometre-sized particles. However, in recent years it has been shown experimentally that, compared with single-beam traps, the use of two opposing and divergent laser beams can be more suitable in studying the elastic properties of biological cells and vesicles. Such a configuration is termed an optical stretcher due to its capability of applying high deforming forces on biological objects such as cells. In this article the experimental capabilities of an optical stretcher as a potential sample delivery system for X-ray diffraction and imaging studies at synchrotrons and X-ray free-electron laser (FEL) facilites are demonstrated. To highlight the potential of the optical stretcher its micromanipulation capabilities have been used to image polymer beads and label biological cells. Even in a non-optimized configuration based on a commercially available optical stretcher system, X-ray holograms could be recorded from different views on a biological cell and the three-dimensional phase of the cell could be reconstructed. The capability of the setup to deform cells at higher laser intensities in combination with, for example, X-ray diffraction studies could furthermore lead to interesting studies that couple structural parameters to elastic properties. By means of high-throughput screening, the optical stretcher could become a useful tool in X-ray studies employing synchrotron radiation, and, at a later stage, femtosecond X-ray pulses delivered by X-ray free-electron lasers.

2018 ◽  
Vol 24 (S2) ◽  
pp. 14-15
Author(s):  
Amane Kobayashi ◽  
Yuki Takayama ◽  
Tomotaka Oroguchi ◽  
Koji Okajima ◽  
Mao Oide ◽  
...  

2012 ◽  
Vol 102 (3) ◽  
pp. 413a
Author(s):  
Walter E. Teague ◽  
Olivier Soubias ◽  
Nola L. Fuller ◽  
R. Peter Rand ◽  
Klaus Gawrisch

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 325
Author(s):  
Sytle Antao

Synchrotron high-resolution powder X-ray diffraction (HRPXRD) and Rietveld structure refinements were used to examine the crystal structure of single phases and intergrowths (either two or three phases) in 13 samples of the helvine-group minerals, (Zn,Fe,Mn)8[Be6Si6O24]S2. The helvine structure was refined in the cubic space group P4¯3n. For the intergrowths, simultaneous refinements were carried out for each phase. The structural parameters for each phase in an intergrowth are only slightly different from each other. Each phase in an intergrowth has well-defined unit-cell and structural parameters that are significantly different from the three endmembers and these do not represent exsolution or immiscibility gaps in the ternary solid-solution series. The reason for the intergrowths in the helvine-group minerals is not clear considering the similar radii, identical charge, and diffusion among the interstitial M cations (Zn2+, Fe2+, and Mn2+) that are characteristic of elongated tetrahedral coordination. The difference between the radii of Zn2+ and Mn2+ cations is 10%. Depending on the availability of the M cations, intergrowths may occur as the temperature, pressure, fugacity fS2, and fluid composition change on crystallization. The Be–Si atoms are fully ordered. The Be–O and Si–O distances are nearly constant. Several structural parameters (Be–O–Si bridging angle, M–O, M–S, average <M–O/S>[4] distances, and TO4 rotational angles) vary linearly with the a unit-cell parameter across the series because of the size of the M cation.


1981 ◽  
Vol 24 (2) ◽  
pp. 1155-1155 ◽  
Author(s):  
J. L. Feldman ◽  
C. L. Vold ◽  
E. F. Skelton ◽  
S. C. Yu ◽  
I. L. Spain

2020 ◽  
Vol 56 (2) ◽  
pp. 269-277
Author(s):  
V.E. Sokol’skii ◽  
D.V. Pruttskov ◽  
O.M. Yakovenko ◽  
V.P. Kazimirov ◽  
O.S. Roik ◽  
...  

Anorthite and gehlenite crystalline structure and short-range order of anorthite melt have been studied by X-ray diffraction in the temperature range from room temperature up to ~ 1923 K. The corresponding anorthite and gehlenite phases were identified as well as amorphous component for anorthite samples having identical shape to XRD pattern of the anorthite melt. The structure factor and the radial distribution function of atoms of the anorthite melt were calculated from the X-ray high-temperature experimental data. The partial structural parameters of the short-range order of the melt were reconstructed using Reverse Monte Carlo simulations.


2017 ◽  
Vol 81 (6) ◽  
pp. 1287-1302
Author(s):  
Ferdinando Bosi ◽  
Andrew G. Christy ◽  
Ulf Hålenius

AbstractFour specimens of the roméite-group minerals oxyplumboroméite and fluorcalcioroméite from the Långban Mn-Fe deposit in Central Sweden were structurally and chemically characterized by single-crystal X-ray diffraction, electron microprobe analysis and infrared spectroscopy. The data obtained and those on additional roméite samples from literature show that the main structural variations within the roméite group are related to variations in the content of Pb2+, which is incorporated into the roméite structure via the substitution Pb2+→A2+ where A2+ = Ca, Mn and Sr. Additionally, the cation occupancy at the six-fold coordinated B site, which is associated with the heterovalent substitution BFe3+ + Y☐→BSb5++YO2-, can strongly affect structural parameters.Chemical formulae of the roméite minerals group are discussed. According to crystal-chemical information, the species associated with the name ‘kenoplumboroméite’, hydroxycalcioroméite and fluorcalcioroméite most closely approximate end-member compositions Pb2(SbFe3+)O6☐, Ca2(Sb5+Ti) O6(OH) and (CaNa)Sb2O6F, respectively. However, in accord with pyrochlore nomenclature rules, their names correspond to multiple end-members and are best described by the general formulae: (Pb,#)2(Sb,#)2O6☐, (Ca,#)2(Sb,#)2O6(OH) and (Ca,#)Sb2(O,#)6F, where ‘#’ indicates an unspecified charge-balancing chemical substituent, including vacancies.


2012 ◽  
Vol 488-489 ◽  
pp. 76-81 ◽  
Author(s):  
Subramani Shanmugan ◽  
Mutharasu Devarajan ◽  
Kamarulazizi Ibrahim

Sb layered Te/Cd thin films have been prepared by using Stacked Elemental Layer (SEL) method. The presence of mixed phases (CdTe and Sb2Te3) in the films was confirmed by the x-ray diffraction technique. The calculated structural parameters demonstrated the feasibility of Sb doping via SEL method. The topographical and electrical studies of the synthesized thin films depicted the influence of Sb on both surface morphology and conductivity. The values of conductivity of the annealed films were in between 2 x 10-3 and 175 x 10-2 Scm-2. A desired chemical composition of films was confirmed from spectrum shape analysis using energy dispersive x-ray.


2010 ◽  
Vol 24 (30) ◽  
pp. 5973-5985
Author(s):  
M. GUNES ◽  
H. GENCER ◽  
T. IZGI ◽  
V. S. KOLAT ◽  
S. ATALAY

NiFe 2 O 4 nanoparticles were successfully prepared by a hydrothermal process, and the effect of temperature on them was studied. The particles were annealed at various temperatures ranging from 413 to 1473 K. Studies were carried out using powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analysis, thermogravimetric analysis and a vibrating sample magnetometer. The annealing temperature had a significant effect on the magnetic and structural parameters, such as the crystallite size, lattice parameter, magnetization and coercivity.


2006 ◽  
Vol 201 (7) ◽  
pp. 4300-4304 ◽  
Author(s):  
D. Faurie ◽  
O. Castelnau ◽  
P.-O. Renault ◽  
G. Patriarche ◽  
R. Brenner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document