scholarly journals A low-cost method for visible fluorescence imaging

Author(s):  
Crissy L. Tarver ◽  
Marc Pusey

A wide variety of crystallization solutions are screened to establish conditions that promote the growth of a diffraction-quality crystal. Screening these conditions requires the assessment of many crystallization plates for the presence of crystals. Automated systems for screening and imaging are very expensive. A simple approach to imaging trace fluorescently labeled protein crystals in crystallization plates has been devised, and can be implemented at a cost as low as $50. The proteins β-lactoglobulin B, trypsin and purified concanavalin A (ConA) were trace fluorescently labeled using three different fluorescent probes: Cascade Yellow (CY), Carboxyrhodamine 6G (CR) and Pacific Blue (PB). A crystallization screening plate was set up using β-lactoglobulin B labeled with CR, trypsin labeled with CY, ConA labeled with each probe, and a mixture consisting of 50% PB-labeled ConA and 50% CR-labeled ConA. The wells of these plates were imaged using a commercially available macro-imaging lens attachment for smart devices that have a camera. Several types of macro lens attachments were tested with smartphones and tablets. Images with the highest quality were obtained with an iPhone 6S and an AUKEY Ora 10× macro lens. Depending upon the fluorescent probe employed and its Stokes shift, a light-emitting diode or a laser diode was used for excitation. An emission filter was used for the imaging of protein crystals labeled with CR and crystals with two-color fluorescence. This approach can also be used with microscopy systems commonly used to observe crystallization plates.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1291
Author(s):  
Giuseppe Schirripa Schirripa Spagnolo ◽  
Fabio Leccese

Nowadays, signal lights are made using light-emitting diode arrays (LEDs). These devices are extremely energy efficient and have a very long lifetime. Unfortunately, especially for yellow/amber LEDs, the intensity of the light is closely related to the junction temperature. This makes it difficult to design signal lights to be used in naval, road, railway, and aeronautical sectors, capable of fully respecting national and international regulations. Furthermore, the limitations prescribed by the standards must be respected in a wide range of temperature variations. In other words, in the signaling apparatuses, a system that varies the light intensity emitted according to the operating temperature is useful/necessary. In this paper, we propose a simple and effective solution. In order to adjust the intensity of the light emitted by the LEDs, we use an LED identical to those used to emit light as a temperature sensor. The proposed system was created and tested in the laboratory. As the same device as the ones to be controlled is used as the temperature sensor, the system is very stable and easy to set up.


2013 ◽  
Vol 17 (05) ◽  
pp. 351-358 ◽  
Author(s):  
Mohammad Janghouri ◽  
Ezeddin Mohajerani ◽  
Mostafa M. Amini ◽  
Naser Safari

A method for obtaining red emission from an organic-light emitting diode has been developed by dissolving red and yellow dyes in a common solvent and thermally evaporating the mixture in a single furnace. Dichlorido-bis(5,7-dichloroquinolin-8-olato)tin(IV) complex ( Q2SnCl2 , Q = 5,7-dichloro-8-hydroxyquinoline) has been synthesized for using as a fluorescent material in organic light-emitting diodes (OLEDs). The electronic states HOMO (Highest Occupied Molecular Orbital)/LUMO (Lowest Occupied Molecular Orbital) energy levels explored by means of cyclic voltammetry measurements. A device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/ Q2SnCl2/Al (180nm) was fabricated and its electroluminescence performance at various thicknesses of light emitting layer (LEL) of Q2SnCl2 is reported. By following this step, an optimal thickness for the doping effect was also identified and explained. Finally a device with fundamental structure of ITO/PEDOT:PSS (55nm)/PVK (90nm)/meso-tetraphenylporphyrin (TPP): Q2SnCl2 (75nm)/ Al (180nm) was fabricated and its electroluminescence performance at various concentrations of dye has been investigated. It is shown that this new method is promising candidate for fabrication of low cost OLEDs at more homogeneous layer.


2018 ◽  
Vol 89 (10) ◽  
pp. 1964-1974
Author(s):  
Yi Huang ◽  
Guangdong Sun ◽  
Yating Ji ◽  
Dapeng Li ◽  
Qinguo Fan ◽  
...  

A blue light curing process was developed to solve the nozzle clogging challenge commonly encountered in conventional textile pigment printing, by using camphorquinone (CQ) and ethyl-4-dimethylaminobenzoate (EDMAB) as a photoinitiator combination and substituting oligomers and monomers for a polymeric binder. High light absorption efficiency was insured by closely matching the spectrum of the photoinitiator with a custom-made blue light light-emitting diode set-up. Kinetic analyses of such a CQ/EDMAB system indicated that the maximum polymerization rate of the monomer was proportional to [PI]0.5 and [I0]0.5, while excessive high photoinitiator concentration (>1 wt%) will decrease the polymerization rate because of the “filter effect.” With optimized blue light curable pigment ink formula and irradiation conditions, the photocurable pigment printed fabrics exhibited uniform and vibrant colors, clear outlines, and excellent wet and dry rubbing fastness of grades 4 and 4–5, respectively.


Author(s):  
Pamela Martinez-Vega ◽  
Araceli Lopez-Badillo ◽  
J. Luis Luviano-Ortiz ◽  
Abel Hernandez-Guerrero ◽  
Jaime G. Cervantes

Abstract The modern world progressively demands more energy; according to forecasts energy consumption will grow at an average annual rate of 3 percent. Therefore, it is necessary to purchase products or devices that are efficient and environmentally friendly. Technology in LED (Light Emitting Diode) lighting is presented as an alternative to energy saving, since LEDs have proven to be extremely efficient, have a long service life and their cost-effective ratio is very good. However, the heat emitted by the LED chip must be dissipated effectively, since the overheating of the chip reduces the efficiency and lifetime of the lamp. Therefore, heat sinks that are reliable, efficient and inexpensive should be designed and built. The present work proposes new designs for heat sinks in LED lamps, some of the models in the design of the fins refer to the Fibonacci series. The models proposed in the present work that have a significant advantage are the Type 1E Model (5.2% mass savings and better thermal efficiency of 8.33%), GR Type 1 Model (3.12% lighter and 3.33% more efficient) and the GRL Type Model (4. 51% mass savings and 5.55% thermally more efficient) compared to the Type 2 Reference Model proposed by Jang et al. [12].


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e62903 ◽  
Author(s):  
Miki Yamaoka ◽  
Shun-suke Asami ◽  
Nayuta Funaki ◽  
Sho Kimura ◽  
Liao Yingjie ◽  
...  

Author(s):  
Hairong Wang ◽  
Xianni Gao ◽  
Guoliang Sun ◽  
Yulong Zhao ◽  
Zhuangde Jiang

In order to detect methane (CH4) accurately and reliably, this paper presents a sensor which consists of infrared diode, fixtures, blazed grating, to realize the extremely narrow-bandwidth light at wavelength of 1.331μm. Based on factors such as compatibility with the transmission characteristics of silica fiber and the cost, a LED (light-emitting diode) with center wavelength of 1.3μm is selected. The LED light is modulated as the parallel light beam. As the light is incident in a micro-blazed grating with certain angle, by diffraction and interference, the light will output the maximum light intensity of its diffraction order at 1.331 μm, which just is an absorption peak of CH4. Micro-blazed grating applied here is low cost and easy replication by various ways, which makes extreme narrow width wavelength possible. Simulation and analysis indicate the designed prototype can output 1.331μm with bandwidth from 1.32907μm to 1.332495μm. With the light source basing on light dividing system, more reliable and higher sensitive measurement of the dangerous gases such as methane and carbon monoxide (CO) can be realized.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4861 ◽  
Author(s):  
Sumit Agrawal ◽  
Christopher Fadden ◽  
Ajay Dangi ◽  
Xinyi Yang ◽  
Hussain Albahrani ◽  
...  

Photoacoustic computed tomography (PACT) has been widely explored for non-ionizing functional and molecular imaging of humans and small animals. In order for light to penetrate deep inside tissue, a bulky and high-cost tunable laser is typically used. Light-emitting diodes (LEDs) have recently emerged as cost-effective and portable alternative illumination sources for photoacoustic imaging. In this study, we have developed a portable, low-cost, five-dimensional (x, y, z, t, λ ) PACT system using multi-wavelength LED excitation to enable similar functional and molecular imaging capabilities as standard tunable lasers. Four LED arrays and a linear ultrasound transducer detector array are housed in a hollow cylindrical geometry that rotates 360 degrees to allow multiple projections through the subject of interest placed inside the cylinder. The structural, functional, and molecular imaging capabilities of the LED–PACT system are validated using various tissue-mimicking phantom studies. The axial, lateral, and elevational resolutions of the system at 2.3 cm depth are estimated as 0.12 mm, 0.3 mm, and 2.1 mm, respectively. Spectrally unmixed photoacoustic contrasts from tubes filled with oxy- and deoxy-hemoglobin, indocyanine green, methylene blue, and melanin molecules demonstrate the multispectral molecular imaging capabilities of the system. Human-finger-mimicking phantoms made of a bone and blood tubes show structural and functional oxygen saturation imaging capabilities. Together, these results demonstrate the potential of the proposed LED-based, low-cost, portable PACT system for pre-clinical and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document