scholarly journals Crystal structure of theMSMEG_4306gene product fromMycobacterium smegmatis

Author(s):  
Adarsh Kumar ◽  
Subramanian Karthikeyan

TheMSMEG_4306gene fromMycobacterium smegmatisencodes a protein of unknown function with 242 amino-acid residues that contains a conserved zinc-ribbon domain at its C-terminus. Here, the crystal structure of MSMEG_4306 determined by the single-wavelength anomalous dispersion method using just one zinc ion co-purified with the protein is reported. The crystal structure of MSMEG_4306 shows a coiled-coil helix domain in the N-terminal region and a zinc-ribbon domain in the C-terminal region. A structural similarity search against the Protein Data Bank using MSMEG_4306 as a query revealed two similar structures, namely CT398 fromChlamydia trachomatisand HP0958 fromHelicobacter pylori, although they share only ∼15% sequence identity with MSMEG_4306. Based on comparative analysis, it is predicted that MSMEG_4306 may be involved in secretion systems, possibly by interacting with multiple proteins or nucleic acids.

1989 ◽  
Vol 9 (1) ◽  
pp. 83-91
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tibisay Guevara ◽  
Hagen Körschgen ◽  
Anna Cuppari ◽  
Carlo Schmitz ◽  
Michael Kuske ◽  
...  

Abstract Human fetuin-B plays a key physiological role in human fertility through its inhibitory action on ovastacin, a member of the astacin family of metallopeptidases. The inhibitor consists of tandem cystatin-like domains (CY1 and CY2), which are connected by a linker containing a “CPDCP-trunk” and followed by a C-terminal region (CTR) void of regular secondary structure. Here, we solved the crystal structure of the complex of the inhibitor with archetypal astacin from crayfish, which is a useful model of human ovastacin. Two hairpins from CY2, the linker, and the tip of the “legumain-binding loop” of CY1 inhibit crayfish astacin following the “raised-elephant-trunk mechanism” recently reported for mouse fetuin-B. This inhibition is exerted by blocking active-site cleft sub-sites upstream and downstream of the catalytic zinc ion, but not those flanking the scissile bond. However, contrary to the mouse complex, which was obtained with fetuin-B nicked at a single site but otherwise intact, most of the CTR was proteolytically removed during crystallization of the human complex. Moreover, the two complexes present in the crystallographic asymmetric unit diverged in the relative arrangement of CY1 and CY2, while the two complexes found for the mouse complex crystal structure were equivalent. Biochemical studies in vitro confirmed the differential cleavage susceptibility of human and mouse fetuin-B in front of crayfish astacin and revealed that the cleaved human inhibitor blocks crayfish astacin and human meprin α and β only slightly less potently than the intact variant. Therefore, the CTR of animal fetuin-B orthologs may have a function in maintaining a particular relative orientation of CY1 and CY2 that nonetheless is dispensable for peptidase inhibition.


2000 ◽  
Vol 182 (4) ◽  
pp. 1053-1061 ◽  
Author(s):  
Shimin Zhao ◽  
Qin Zhu ◽  
Ronald L. Somerville

ABSTRACT The TyrR protein of Escherichia coli (513 amino acid residues) is the chief transcriptional regulator of a group of genes that are essential for aromatic amino acid biosynthesis and transport. The TyrR protein can function either as a repressor or as an activator. The central region of the TyrR protein (residues 207 to 425) is similar to corresponding polypeptide segments of the NtrC protein superfamily. Like the NtrC protein, TyrR has intrinsic ATPase activity. Here, we report that TyrR possesses phosphatase activity. This activity is subject to inhibition by l-tyrosine and its analogues and by ATP and ATP analogues. Zinc ion (2 mM) stimulated the phosphatase activity of the TyrR protein by a factor of 57. The phosphatase-active site of TyrR was localized to a 31-kDa domain (residues 191 to 467) of the protein. However, mutational alteration of distant amino acid residues at both the N terminus and the C terminus of TyrR altered the phosphatase activity. Haemophilus influenzae TyrR (318 amino acid residues), a protein with a high degree of sequence similarity to the C terminus of the E. coli TyrR protein, exhibited a phosphatase activity similar to that of E. coliTyrR.


2006 ◽  
Vol 26 (5) ◽  
pp. 1743-1753 ◽  
Author(s):  
Inês Chaves ◽  
Kazuhiro Yagita ◽  
Sander Barnhoorn ◽  
Hitoshi Okamura ◽  
Gijsbertus T. J. van der Horst ◽  
...  

ABSTRACT Cryptochromes (CRYs) are composed of a core domain with structural similarity to photolyase and a distinguishing C-terminal extension. While plant and fly CRYs act as circadian photoreceptors, using the C terminus for light signaling, mammalian CRY1 and CRY2 are integral components of the circadian oscillator. However, the function of their C terminus remains to be resolved. Here, we show that the C-terminal extension of mCRY1 harbors a nuclear localization signal and a putative coiled-coil domain that drive nuclear localization via two independent mechanisms and shift the equilibrium of shuttling mammalian CRY1 (mCRY1)/mammalian PER2 (mPER2) complexes towards the nucleus. Importantly, deletion of the complete C terminus prevents mCRY1 from repressing CLOCK/BMAL1-mediated transcription, whereas a plant photolyase gains this key clock function upon fusion to the last 100 amino acids of the mCRY1 core and its C terminus. Thus, the acquirement of different (species-specific) C termini during evolution not only functionally separated cryptochromes from photolyase but also caused diversity within the cryptochrome family.


2006 ◽  
Vol 74 (10) ◽  
pp. 5595-5601 ◽  
Author(s):  
Cynthia L. Sears ◽  
Simy L. Buckwold ◽  
Jai W. Shin ◽  
Augusto A. Franco

ABSTRACT To evaluate the role of the C-terminal region in Bacteroides fragilis toxin (BFT) activity, processing, and secretion, sequential C-terminal truncation and point mutations were created by site-directed mutagenesis. Determination of BFT activity on HT29/C1 cells, cleavage of E-cadherin, and the capacity to induce interleukin-8 secretion by wild-type BFT and C-terminal deletion mutants showed that deletion of only 2 amino acid residues at the C terminus significantly reduced BFT biological activity and deletion of eight or more amino acid residues obliterated BFT biologic activity. Western blot and reverse transcription-PCR analyses indicated that BFT mutants lacking seven or fewer amino acid residues in the C-terminal region are processed and expressed similar to wild-type BFT. However, BFT mutants lacking eight or more amino acids at the C terminus are expressed similar to wild-type BFT but are unstable. We concluded that the C terminus of BFT is not tolerant of modest amino acid deletions, suggesting that it is biologically important for BFT activity.


1989 ◽  
Vol 9 (1) ◽  
pp. 83-91 ◽  
Author(s):  
S Miyazawa ◽  
T Osumi ◽  
T Hashimoto ◽  
K Ohno ◽  
S Miura ◽  
...  

To identify the topogenic signal of peroxisomal acyl-coenzyme A oxidase (AOX) of rat liver, we carried out in vitro import experiments with mutant polypeptides of the enzyme. Full-length AOX and polypeptides that were truncated at the N-terminal region were efficiently imported into peroxisomes, as determined by resistance to externally added proteinase K. Polypeptides carrying internal deletions in the C-terminal region exhibited much lower import activities. Polypeptides that were truncated or mutated at the extreme C terminus were totally import negative. When the five amino acid residues at the extreme C terminus were attached to some of the import-negative polypeptides, the import activities were rescued. Moreover, the C-terminal 199 and 70 amino acid residues of AOX directed fusion proteins with two bacterial enzymes to peroxisomes. These results are interpreted to mean that the peroxisome targeting signal of AOX residues at the C terminus and the five or fewer residues at the extreme terminus have an obligatory function in targeting. The C-terminal internal region also has an important role for efficient import, possibly through a conformational effect.


Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 705-720 ◽  
Author(s):  
Heather B McDonald ◽  
Astrid Hoes Helfant ◽  
Erin M Mahony ◽  
Shaun K Khosla ◽  
Loretta Goetsch

AbstractThe ubiquitin/proteasome pathway plays a key role in regulating cell cycle progression. Previously, we reported that a conditional mutation in the Saccharomyces cerevisiae gene RPT4/PCS1, which encodes one of six ATPases in the proteasome 19S cap complex/regulatory particle (RP), causes failure of spindle pole body (SPB) duplication. To improve our understanding of Rpt4p, we created 58 new mutations, 53 of which convert clustered, charged residues to alanine. Virtually all mutations that affect the N-terminal region, which contains a putative nuclear localization signal and coiled-coil motif, result in a wild-type phenotype. Nine mutations that affect the central ATPase domain and the C-terminal region confer recessive lethality. The two conditional mutations identified, rpt4-145 and rpt4-150, affect the C terminus. After shift to high temperature, these mutations generally cause cells to progress slowly through the first cell cycle and to arrest in the second cycle with large buds, a G2 content of DNA, and monopolar spindles, although this phenotype can vary depending on the medium. Additionally, we describe a genetic interaction between RPT4 and the naturally polymorphic gene SSD1, which in wild-type form modifies the rpt4-145 phenotype such that cells arrest in G2 of the first cycle with complete bipolar spindles.


2013 ◽  
Vol 142 (1) ◽  
pp. 37-60 ◽  
Author(s):  
Patricia Morales ◽  
Line Garneau ◽  
Hélène Klein ◽  
Marie-France Lavoie ◽  
Lucie Parent ◽  
...  

The Ca2+-activated potassium channel of intermediate conductance, KCa3.1, is now emerging as a therapeutic target for a large variety of health disorders. The Ca2+ sensitivity of KCa3.1 is conferred by the Ca2+-binding protein calmodulin (CaM), with the CaM C-lobe constitutively bound to an intracellular domain of the channel C terminus. It was proposed on the basis of the crystal structure obtained for the C-terminal region of the rat KCa2.2 channel (rSK2) with CaM that the binding of Ca2+ to the CaM N-lobe results in CaM interlocking the C-terminal regions of two adjacent KCa3.1 subunits, leading to the formation of a dimeric structure. A study was thus undertaken to identify residues of the CaM N-lobe–KCa3.1 complex that either contribute to the channel activation process or control the channel open probability at saturating Ca2+ (Pomax). A structural homology model of the KCa3.1–CaM complex was first generated using as template the crystal structure of the C-terminal region of the rat KCa2.2 channel with CaM. This model was confirmed by cross-bridging residues R362 of KCa3.1 and K75 of CaM. Patch-clamp experiments were next performed, demonstrating that the solvation energy of the residue at position 367 in KCa3.1 is a key determinant to the channel Pomax and deactivation time toff. Mutations of residues M368 and Q364 predicted to form anchoring points for CaM binding to KCa3.1 had little impact on either toff or Pomax. Finally, our results show that channel activation depends on electrostatic interactions involving the charged residues R362 and E363, added to a nonpolar energy contribution coming from M368. We conclude that electrostatic interactions involving residues R362 and E363 and hydrophobic effects at M368 play a prominent role in KCa3.1 activation, whereas hydrophobic interactions at S367 are determinant to the stability of the CaM–KCa3.1 complex throughout gating.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yue Liu ◽  
Xiaoyun Zhou ◽  
Wenbo Liu ◽  
Weiguo Miao

Abstract Background Heat resistance is a common characteristic of harpins, a class of proteins found in Gram-negative bacteria, which may be related to the stability of coiled-coil (CC) structure. The CC structure is a ubiquitous protein folding and assembly motif made of α-helices wrapping around each other forming a supercoil. Specifically, whether the stability of the CC structure near to N-terminus of four selected harpin proteins from Xanthomonas (hereafter referred to as Hpa1) would influence their characteristics of heat resistance was investigated. We used bioinformatics approach to predict the structure of Hpa1, used the performance of hypersensitive response (HR)-induction activity of Hpa1 and circular dichroism (CD) spectral analyses to detect the relationship between the stability of the CC structure of Hpa1 and heat resistance. Results Each of four-selected Hpa1 has two α-helical regions with one in their N-terminus that could form CC structure, and the other in their C-terminus that could not. And the important amino acid residues involved in the CC motifs are located on helices present on the surface of these proteins, indicating they may engage in the formation of oligo mericaggregates, which may be responsible for HR elicitation by harpins and their high thermal stability. Increased or decreased the probability of forming a CC could either induce a stronger HR response or eliminate the ability to induce HR in tobacco after high temperature treatment. In addition, although the four Hpa1 mutants had little effect on the induction of HR by Hpa1, its thermal stability was significantly decreased. The α-helical content increased with increasing temperature, and the secondary structures of Hpa1 became almost entirely α-helices when the temperature reached 200 °C. Moreover, the stability of the CC structure near to N-terminus was found to be positively correlated with the heat resistance of Hpa1. Conclusions The stability of the CC structure might sever as an inner drive for mediating the heat resistance of harpin proteins. Our results offer a new insight into the interpretation of the mechanism involved in the heat resistance of harpin protein and provide a theoretical basis for further harpin function investigations and structure modifications.


1980 ◽  
Vol 151 (3) ◽  
pp. 695-708 ◽  
Author(s):  
B N Manjula ◽  
V A Fischetti

Partial sequences of three immunologically distinct group A streptococcal M proteins (M5, M6, and M24) revealed significant homology with each other, certain amino acid residues being conserved within the three molecules. In addition, a common feature of the sequenced regions of these M proteins was their high alpha-helical potential and the presence of a repeating seven residue periodicity that is characteristic of the double helical coiled-coil molecule, tropomyosin. The existence of a tropomyosin-like seven residue periodicity strongly suggests that regions of these three M proteins may participate in intra- and/or intermolecular coiled-coil interactions. Because of the constraints imposed by such a repeating periodicity, certain conserved residues within the M proteins would occupy spatially equivalent positions in the tertiary structure of these molecules. This common characteristic could play an important role in the common antiphagocytic property of the immunologically diverse M molecules. In addition to similarities in the secondary structure of M proteins and tropomyosin, significant sequence homology has also been observed between certain regions of these molecules with up to 50% identical residues. As a result of the striking structural similarity with tropomyosin, M proteins may play a regulatory role in the contractile mechanisms involved in phagocytosis.


Sign in / Sign up

Export Citation Format

Share Document