scholarly journals New Ag(I) Coordination Complexes Based on Bis(1-isoquinolinecarboxamide)ethane.

2014 ◽  
Vol 70 (a1) ◽  
pp. C665-C665
Author(s):  
Nicole Parra ◽  
Julio Belmar ◽  
Claudio Jiménez ◽  
Jorge Pasán ◽  
Catalina Ruiz-Pérez

Crystal Engineering is an interdisciplinary research area that involves chemists, physicists, biologists and materials scientists.1It is an important field inside Supramolecular Chemistry which has been considered as a new form of synthesis, named Supramolecular Synthesis.2It is known that important properties in molecular solids are closely related with the way that molecules are aggregated in the condensed phase. Consequently, the ability to control the molecular association in the crystal packing could offer control over specific properties and potential applications. Because of that, the main goal of Crystal Engineering is the rational design and synthesis of functional materials using the nature of the intermolecular forces as a toolkit. Our strategy is the systematic study of non-covalent forces in homologous series.3In this work our interest is focused on the study of crystal packing of two homologous ligands N,N'-bis(1-isoquinolinecarboxamide)-1,2-ethane (1) and N,N'-dimethyl-N,N'-bis(1-isoquinolinecarboxamide)-1,2-ethane (2) and their Ag(I) coordination complexes. The compound 1 consists of two isoquinoline rings and one ethylene bridge linked by amide functional groups. Compound 2 is the result of the N-methylation of 1. The main difference in the molecular structures is that while 1 present a gauche conformation in the 1,2-ethanediamine bridge (600) 2 present a staggered conformation (1800). Curiously, in spite of this fact, the Ag(I) complexes in both cases present a small torsion angle of 4501-Ag(I) and 6502-Ag(I). These orientations allow the torsion of the isoquinoline moiety and the formation of homonuclear 0D coordination complexes, over the 1D coordination polymer expected. The main intermolecular interaction in 1 is the amide-to-amide hydrogen bond that is replaced by a weak CH··O interaction in 2 On the other hand, both Ag(I) complexes use the nitrate counteranion to build a chain using NH··O(nitrate) in 1 and CH(quinoline)··O(nitrate) in 2.Acknowledgment: Grant DIUC 212.023.049-1.0

2019 ◽  
Author(s):  
Jack Yang ◽  
Nathan Li ◽  
Sean Li

The ability to perform large-scale crystal structure predictions (CSP) have significantly advanced the synthesis of functional molecular solids by designs. In our recent work [Chem. Mater., 30, 4361 (2018)], we demonstrated our latest developments in organic CSPs by screening a set of 28 pyrrole azaphenacene isomers which led to one new molecule with higher thermodynamic stability and carrier mobilities in its crystalline form, compared to the one reported experimentally. Hereby, using the lattice energy landscapes for pyrrole azaphenacenes as examples, we applied machine-learning techniques to statistically reveal in more details, on how molecular symmetry and Z' values translate to the crystal packing landscapes, which in terms affect the coverage of landscape through quasi-random crystal structure samplings. A recurring theme in crystal engineering is to identify the probabilities of targeting isostructures to a specific reference crystal upon chemical functionalisations. For this, we propose here a global similarity index in conjunction with the Energy-Density Isostructurality (EDI) map to analyse the lattice energy landscapes for halogen substituted pyrrole azaphenacenes. A continue effort in the field is to accelerate CSPs for sampling a much wider chemical space for high-throughput material screenings, we propose a potential solution to this challenge drawn upon this study. Our work will hopefully stimulate the crystal engineering community in adapting a more statistically-oriented approach in understanding crystal packing of organic molecules in the age of digitisation.


2019 ◽  
Vol 92 (2) ◽  
pp. 315-321
Author(s):  
Biserka Kojić-Prodić ◽  
Krešimir Molčanov

The article sheds light on some historical crossings of organic chemistry and chemical crystallography. It connects past and present bringing into the focus Prof. Kata Mlinarić-Majerski’s research. An impact of structural chemistry on organic synthesis and reactivity is shown. X-ray structure analysis was established as a unique method to determine the composition and architecture of synthetic and natural organic molecules, already in the second decade of the last century; some of historical and scientific milestones are shown. Numerous controversies were solved, when intriguing molecular structures had been determined and the nature of chemical bond was clarified. An absolute structure (chirality) determination using an anomalous dispersion of X-rays was an important step forward, particularly in pharmaceutical industry. Structural data provided by X-ray crystallography, stored by Cambridge Structural Data Centre have been of great impact on many areas of science. They are closely related to intra- and intermolecular forces and structure/function correlations directing us to synthesis of compounds with designed properties. The developments of supramolecular chemistry, crystal engineering, materials science, and most of all of molecular machines have been assisted by chemical crystallography. The essay does not aim to review the complete scientific opus of Prof. K. Mlinarić-Majerski but it is focused on some of the highlights of her research. The interdisciplinary approach in her research is related to the use of X-ray structural analysis to define molecular architecture, conformational chirality, conformational isomerism, and get insight into reaction paths, interactions governing molecular assembling, and to recognise chemical properties of new compounds. In these researches the X-ray crystallographers were involved.


1997 ◽  
Vol 53 (4) ◽  
pp. 569-586 ◽  
Author(s):  
C. B. Aakeröy

The area broadly described as crystal engineering is currently expanding at a brisk pace. Imaginative schemes for supramolecular synthesis, and correlations between molecular structure, crystal packing and physical properties are presented in the literature with increasing regularity. In practice, crystal engineering can be many different things; synthesis, statistical analysis of structural data, ab initio calculations etc. Consequently, we have been provided with a new playing field where chemists from traditionally unconnected parts of the spectrum have exchanged ideas, defined goals and made creative contributions to further progress not only in crystal engineering, but also in other disciplines of chemistry. Crystal engineering is delineated by the nature and structural consequences of intermolecular forces, and the way in which such interactions are utilized for controlling the assembly of molecular building blocks into infinite architectures. Although it is important to acknowledge that a crystal structure is the result of a subtle balance between a multitude of non-covalent forces, this article will focus on design strategies based upon the hydrogen bond and will present a range of approaches that have relied on the directionality and selectivity of such interactions in the synthesis of predictable one-, two- and three-dimensional motifs.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5746
Author(s):  
Giovanni Bella ◽  
Francesco Nicolò ◽  
Giuseppe Bruno ◽  
Antonio Santoro

Interest in co-crystals formation has been constantly growing since their discovery, almost a century ago. Such success is due to the ability to tune the physical-chemical properties of the components in solid state by avoiding a change in their molecular structure. The properties influenced by the co-crystals formation range from an improvement of mechanical features and chemical stability to different solubility. In the scientific research area, the pharmacological field is undoubtedly one of those in which an expansion of the co-crystal knowledge can offer wide benefits. In this work, we described the crystalline structure of hexamethylenetetramine co-crystallized with the isophthalic acid, and we compared it with another co-crystal, showing the same components but different stoichiometry. To give a wider overview on the nature of the interactions behind the observed crystal packing and to rationalize the reasons of its formation, a computational analysis on such structures was carried out.


2019 ◽  
Author(s):  
Jack Yang ◽  
Nathan Li ◽  
Sean Li

The ability to perform large-scale crystal structure predictions (CSP) have significantly advanced the synthesis of functional molecular solids by designs. In our recent work [Chem. Mater., 30, 4361 (2018)], we demonstrated our latest developments in organic CSPs by screening a set of 28 pyrrole azaphenacene isomers which led to one new molecule with higher thermodynamic stability and carrier mobilities in its crystalline form, compared to the one reported experimentally. Hereby, using the lattice energy landscapes for pyrrole azaphenacenes as examples, we applied machine-learning techniques to statistically reveal in more details, on how molecular symmetry and Z' values translate to the crystal packing landscapes, which in terms affect the coverage of landscape through quasi-random crystal structure samplings. A recurring theme in crystal engineering is to identify the probabilities of targeting isostructures to a specific reference crystal upon chemical functionalisations. For this, we propose here a global similarity index in conjunction with the Energy-Density Isostructurality (EDI) map to analyse the lattice energy landscapes for halogen substituted pyrrole azaphenacenes. A continue effort in the field is to accelerate CSPs for sampling a much wider chemical space for high-throughput material screenings, we propose a potential solution to this challenge drawn upon this study. Our work will hopefully stimulate the crystal engineering community in adapting a more statistically-oriented approach in understanding crystal packing of organic molecules in the age of digitisation.


2020 ◽  
Vol 10 (3) ◽  
pp. 169-184
Author(s):  
Rachna Anand ◽  
Arun Kumar ◽  
Arun Nanda

Background: Solubility and dissolution profile are the major factors which directly affect the biological activity of a drug and these factors are governed by the physicochemical properties of the drug. Crystal engineering is a newer and promising approach to improve physicochemical characteristics of a drug without any change in its pharmacological action through a selection of a wide range of easily available crystal formers. Objective: The goal of this review is to summarize the importance of crystal engineering in improving the physicochemical properties of a drug, methods of design, development, and applications of cocrystals along with future trends in research of pharmaceutical co-crystals. Co-crystallization can also be carried out for the molecules which lack ionizable functional groups, unlike salts which require ionizable groups. Conclusion: Co-crystals is an interesting and promising research area amongst pharmaceutical scientists to fine-tune the physicochemical properties of drug materials. Co-crystallization can be a tool to increase the lifecycle of an older drug molecule. Crystal engineering carries the potential of being an advantageous technique than any other approach used in the pharmaceutical industry. Crystal engineering offers a plethora of biopharmaceutical and physicochemical enhancements to a drug molecule without the need of any pharmacological change in the drug.


2020 ◽  
Vol 85 (16) ◽  
pp. 10552-10560
Author(s):  
Peng Sang ◽  
Yan Shi ◽  
Pirada Higbee ◽  
Minghui Wang ◽  
Sami Abdulkadir ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 8191
Author(s):  
Fumihiro Kawagoe ◽  
Sayuri Mototani ◽  
Atsushi Kittaka

The discovery of a large variety of functions of vitamin D3 and its metabolites has led to the design and synthesis of a vast amount of vitamin D3 analogues in order to increase the potency and reduce toxicity. The introduction of highly electronegative fluorine atom(s) into vitamin D3 skeletons alters their physical and chemical properties. To date, many fluorinated vitamin D3 analogues have been designed and synthesized. This review summarizes the molecular structures of fluoro-containing vitamin D3 analogues and their synthetic methodologies.


Sign in / Sign up

Export Citation Format

Share Document