scholarly journals Defect mastering - one of the topic challenges for crystal growth

2014 ◽  
Vol 70 (a1) ◽  
pp. C32-C32
Author(s):  
Peter Rudolph

The quality of single crystals, epitaxial layers and devices made there from are very sensitively influenced by structural and atomistic deficiencies generated during the crystal growth. Crystalline imperfections comprise point defects, dislocations, grain boundaries, second-phase particles. Over more than a half-century of the development of crystal growth, most of the important defect-forming mechanisms have become well understood [1-2]. As a result, the present state of technology makes it possible to produce crystals of remarkably high quality. However, that is not to say that all problems are already solved. For instance, in comparison with silicon the point defect dynamics in semiconductor and oxide compounds is not nearly as well understood. The density of equivalent defect types and antisites in each sub-lattice is determined by deviation from stoichiometry. Their charge state depends on the Fermi level position leading via interaction with dopants to certain compensation level and complex formation. One measure proves to be the in situ control of stoichiometry. Due to high-temperature dislocation dynamics heterogeneous dislocation substructures are formed. Both, acting thermo-mechanical stress and given point defect situation force the dislocation to glide and climb. In the course of enthalpy minimization the long-range character of dislocation interaction produces agglomerates and patterns with polygonized cell walls, i.e. small angle grain boundaries [3]. Thanks to the rules of correspondence of Taylor and Kuhlmann-Wilsdorf one is able to estimate the interaction between shear stress, dislocation density and cell diameter (Fig.). In epitaxy the Nye tensor, describing dislocation distribution inhomogeneity, affects the layer stress considerably. The growth under minimum stress, solution hardening and in situ stoichiometry control are effective counteracting methods. One of the most serious consequences during cooling down of as-grown crystals is the point defect condensation in precipitates and micro-voids decorating dislocation patterns or inducing high mechanical misfit stress that generates dislocation loops. It proves to be favourable to anneal the crystal a few degrees below the melting point in order to dissolve the particles and re-diffuse their into the crystal matrix.

Author(s):  
R.A. Herring ◽  
M. Griffiths ◽  
M.H Loretto ◽  
R.E. Smallman

Because Zr is used in the nuclear industry to sheath fuel and as structural component material within the reactor core, it is important to understand Zr's point defect properties. In the present work point defect-impurity interaction has been assessed by measuring the influence of grain boundaries on the width of the zone denuded of dislocation loops in a series of irradiated Zr alloys. Electropolished Zr and its alloys have been irradiated using an AEI EM7 HVEM at 1 MeV, ∼675 K and ∼10-6 torr vacuum pressure. During some HVEM irradiations it has been seen that there is a difference in the loop nucleation and growth behaviour adjacent to the grain boundary as compared with the mid-grain region. The width of the region influenced by the presence of the grain boundary should be a function of the irradiation temperature, dose rate, solute concentration and crystallographic orientation.


Author(s):  
E. Holzäpfel ◽  
F. Phillipp ◽  
M. Wilkens

During in-situ radiation damage experiments aiming on the investigation of vacancy-migration properties interstitial-type dislocation loops are used as probes monitoring the development of the point defect concentrations. The temperature dependence of the loop-growth rate v is analyzed in terms of reaction-rate theory yielding information on the vacancy migration enthalpy. The relation between v and the point-defect production rate P provides a critical test of such a treatment since it is sensitive to the defect reactions which are dominant. If mutual recombination of vacancies and interstitials is the dominant reaction, vαP0.5 holds. If, however, annihilation of the defects at unsaturable sinks determines the concentrations, a linear relationship vαP is expected.Detailed studies in pure bcc-metals yielded vαPx with 0.7≾×≾1.0 showing that besides recombination of vacancies and interstitials annihilation at sinks plays an important role in the concentration development which has properly to be incorporated into the rate equations.


2004 ◽  
Vol 812 ◽  
Author(s):  
Ehrenfried Zschech ◽  
Moritz A. Meyer ◽  
Eckhard Langer

AbstractIn-situ SEM electromigration studies were performed at fully embedded via/line interconnect structures to visualize the time-dependent void evolution in inlaid copper interconnects. Void formation, growth and movement, and consequently interconnect degradation, depend on both interface bonding and copper microstructure. Two phases are distinguished for the electromigration-induced interconnect degradation process: In the first phase, agglomerations of vacancies and voids are formed at interfaces and grain boundaries, and voids move along weak interfaces. In the second phase of the degradation process, they merge into a larger void which subsequently grows into the via and eventually causes the interconnect failure. Void movement along the copper line and void growth in the via are discontinuous processes, whereas their step-like behavior is caused by the copper microstructure. Directed mass transport along inner surfaces depends strongly on the crystallographic orientation of the copper grains. Electromigration lifetime can be drastically increased by changing the copper/capping layer interface. Both an additional CoWP coating and a local copper alloying with aluminum increase the bonding strength of the top interface of the copper interconnect line, and consequently, electromigration-induced mass transport and degradation processes are reduced significantly.


2013 ◽  
Vol 753 ◽  
pp. 221-224 ◽  
Author(s):  
Krzysztof Sztwiertnia ◽  
Magdalena Bieda ◽  
Anna Korneva

In situ orientation mapping using TEM and calorimetric measurements were carried out to investigate the annealing behavior of cold-rolled 6013 aluminum alloy. The recrystallization of the material can be considered to be a number of processes that correspond to two separate stored energy release peaks. In the temperature range of the peak 1, the deformation zones around the large second-phase particles acted as sites for particle-stimulated nucleation. In the matrix, at the same time, some elongation of grains occurred. The elongated matrix grains appeared because of the reduction of the dislocation density and the annihilation of some low-angle grain boundaries between chains of subgrains lying in layers parallel to the sheet plane. The matrix processes in this temperatures range can be considered forms of continuous recrystallization. The matrix high-angle grain boundaries started to migrate at the temperature range of the peak 2. They moved mostly in the direction normal to the sheet plane. Heating of the sample for an appropriate time at those temperatures resulted in the complete discontinuous recrystallization of the material. The recrystallized microstructure was dominated now by elongated grains, which were a few times thicker than those obtained by annealing at the temperatures of the peak 1.


2016 ◽  
Vol 253 (4) ◽  
pp. 654-658
Author(s):  
Shujie Wang ◽  
Niefeng Sun ◽  
Linjie Gao ◽  
Xinhui Liu ◽  
Yanlei Shi ◽  
...  

2016 ◽  
Vol 2 (11) ◽  
pp. e1501926 ◽  
Author(s):  
Shun Kondo ◽  
Tasuku Mitsuma ◽  
Naoya Shibata ◽  
Yuichi Ikuhara

In deformation processes, the presence of grain boundaries has a crucial influence on dislocation behavior; these boundaries drastically change the mechanical properties of polycrystalline materials. It has been considered that grain boundaries act as effective barriers for dislocation glide, but the origin of this barrier-like behavior has been a matter of conjecture for many years. We directly observe how the motion of individual dislocations is impeded at well-defined high-angle and low-angle grain boundaries in SrTiO3, via in situ nanoindentation experiments inside a transmission electron microscope. Our in situ observations show that both the high-angle and low-angle grain boundaries impede dislocation glide across them and that the impediment of dislocation glide does not simply originate from the geometric effects; it arises as a result of the local structural stabilization effects at grain boundary cores as well, especially for low-angle grain boundaries. The present findings indicate that simultaneous consideration of both the geometric effects and the stabilization effects is necessary to quantitatively understand the dislocation impediment processes at grain boundaries.


2002 ◽  
Vol 124 (3) ◽  
pp. 342-351 ◽  
Author(s):  
Tariq A. Khraishi ◽  
Hussein M. Zbib

Recent advances in 3-D dislocation dynamics include the proper treatment of free surfaces in the simulations. Dislocation interaction and slip is treated as a boundary-value problem for which a zero-traction condition is enforced at the external surfaces of the simulation box. Here, a new rigorous method is presented to handle such a treatment. The method is semi-analytical/numerical in nature in which we enforce a zero traction condition at select collocation points on a surface. The accuracy can be improved by increasing the number of collocation points. In this method, the image stress-field of a subsurface dislocation segment near a free surface is obtained by an image segment and by a distribution of prismatic rectangular dislocation loops padding the surface. The loop centers are chosen to be the collocation points of the problem. The image segment, with proper selection of its Burgers vector components, annuls the undesired shear stresses on the surface. The distributed loops annul the undesired normal stress component at the collocation points, and in the process create no undesirable shear stresses. The method derives from crack theory and falls under “generalized image stress analysis” whereby a distribution of dislocation geometries or entities (in this case closed rectangular loops), and not just simple mirror images, are used to satisfy the problem’s boundary conditions (BCs). Such BCs can, in a very general treatment, concern either stress traction or displacements.


2016 ◽  
Author(s):  
Jan Eichler ◽  
Ina Kleitz ◽  
Maddalena Bayer ◽  
Daniela Jansen ◽  
Sepp Kipfstuhl ◽  
...  

Abstract. Impurities control a variety of physical properties of polar ice. Their impact can be observed at all scales – from the microstructure (e.g., grain size and orientation) to the ice sheet flow behavior (e.g., borehole tilting and closure). Most impurities are likely to form micrometer-sized second phase inclusions. It has been suggested that these particles control the grain size of polycrystalline ice by the pinning of grain boundaries (Zener pinning), which should be reflected in the distribution of the inclusions in relation to the grain boundary network. We used an optical microscope to generate high-resolution large-scale maps (3 μm pix−1, 8 × 2 cm2) of the distribution of micro-inclusions in four samples from the EDML (Antarctica) and NEEM (Greenland) polar ice cores. The in-situ positions of more than 5000 μ-inclusions have been determined. A Raman microscope was used to confirm the extrinsic nature of a sample proportion of the mapped inclusions. A superposition of the 2D grain boundary network and μ-inclusion distributions show no significant correlations between grain boundaries and μ-inclusions. In particular, no signs could be found of grain boundaries harvesting μ-inclusions, no evidence of μ-inclusions inhibiting grain boundary migration by slow mode pinning could be detected. Consequences for our understanding of the impurity effect on ice microstructure and rheology are discussed.


2020 ◽  
Vol 321 ◽  
pp. 12043
Author(s):  
Nicholas E. Byres ◽  
João Quinta da Fonseca ◽  
Benjamin Dod ◽  
Jack Donoghue ◽  
Alec Davis ◽  
...  

The ß-annealing of Titanium-6Al-4V (Ti64) wrought aerospace components can lead to the development of abnormal grain structures (AGS) that jeopardise material performance. Therefore, an in-depth understanding into the origins of AGS will help in the design of processing routes that can avoid the conditions that lead to their development. This research demonstrates the application of novel concurrent in-situ heating and electron back scatter diffraction (EBSD) techniques to help elucidate possible mechanisms for the development of AGS. It was found that primary-a (ap) may play a key role, acting as a second phase particle, in pinning the ß-phase grain boundaries during recrystallisation. The strengthening of a large area cube component texture macrozone, consisting of predominantly low angle grain boundaries, is also a prerequisite for the development of AGS.


2003 ◽  
Vol 795 ◽  
Author(s):  
W. A. Soer ◽  
J. Th. M. De Hosson ◽  
A. M. Minor ◽  
E. A. Stach ◽  
J. W. Morris

ABSTRACTThe deformation behavior of Al and Al-Mg thin films has been studied with the unique experimental approach of in-situ nanoindentation in a transmission electron microscope. This paper concentrates on the role of solute Mg additions in the transfer of plasticity across grain boundaries. The investigated Al alloys were deposited onto a Si substrate as thin films with a thickness of 200–300 nm and Mg concentrations of 0, 1.1, 1.8, 2.6 and 5.0 wt% Mg. The results show that in the Al-Mg alloys, the solutes effectively pin high-angle grain boundaries, while in pure Al considerable grain boundary motion is observed at room temperature. The mobility of low-angle grain boundaries is however not affected by the presence of Mg. In addition, Mg was observed to affect dislocation dynamics in the matrix.


Sign in / Sign up

Export Citation Format

Share Document