An adaptive ball-head positioning visual servoing method for aircraft digital assembly

2019 ◽  
Vol 39 (2) ◽  
pp. 287-296 ◽  
Author(s):  
Hua Liu ◽  
Weidong Zhu ◽  
Huiyue Dong ◽  
Yinglin Ke

PurposeTo gain accurate support for large aircraft structures by ball joints in aircraft digital assembly, this paper aims to propose a novel approach based on visual servoing such that the positioner’s ball-socket can automatically and adaptively approach the ball-head fixed on the aircraft structures.Design/methodology/approachImage moments of circular marker labeled on the ball-head are selected as visual features to control the three translational degrees of freedom (DOFs) of the positioner, where the composite Jacobian matrix is full rank. Kalman–Bucy filter is adopted for its online estimation, which makes the control scheme more flexible without system calibration. A combination of proportional control with sliding mode control is proposed to improve the system stability and compensate uncertainties of the system.FindingsThe ball-socket can accurately and smoothly reach its desired position in a finite time (50s). Positional deviations between the spherical centers of ball-head and ball-socket in theX-Yplane can be controlled within 0.05 mm which meets the design requirement.Practical implicationsThe proposed approach has been integrated into the pose alignment system. It has shown great potential to be widely applied in the leading support for large aircraft structures in aircraft digital assembly.Originality/valueAn adaptive approach for accurate support of large aircraft structures is proposed, which possesses characteristics of high precision, high efficiency and excellent stability.

Author(s):  
Hamdi Echeikh ◽  
Hichem Kesraoui ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Mohamed Faouzi Mimouni

Purpose This paper aims to deal with direct torque controller when the five-phase induction motor drive in faulty operation. Precisely, open-phase fault condition is contemplated. Also, the DTC is combined with a speed-adaptive variable-structure observer based on sliding mode observer. Design methodology/approach Two novel features are presented. First, the concept of the virtual voltage vector is presented, which eliminates low-frequency harmonic currents and simplifies analysis. Second, speed information is introduced into the selection of the inverter states. Findings Direct torque control (DTC) is largely used in traditional three-phase drives as a backup to rotor-stator flux-oriented methods. The classic DTC strategy was primarily designed on the base of hysteresis controllers to control two independent variables (speed, torque and flux). Due to the additional degrees of freedom offered by multiphase machine, extensive works have been extended on the ensemble five-phase drives in healthy operation. In addition, the ability to continue the operation in faulty conditions is considering one of the main advantages of multiphase machines. One can find in the literature different approaches treating this subject. The applicability of DTC after the appearing of a fault has not been enclosed in the literature. Originality/value Theoretical development is presented in details followed by simulation results using Matlab/Simulink to analyze the performance of the drive, comparing with the behavior during healthy situation.


2017 ◽  
Vol 37 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Junxia Jiang ◽  
Chen Bian ◽  
Yinglin Ke

Purpose The purpose of this paper is to design a new method to realize automatic assembly of aircraft components with large shafts such as canard and vertical tail. The assembly structure of component with large shaft and fuselage is a mating assembly structure, and it is a challenge to satisfy the precision and assembly requirement. Design/methodology/approach According to the assembly structure features and process requirements of an aircraft component with large shaft, the operating principle of precise assembly system for shaft-hole mating is analyzed in this paper. The model of compliant assembly for shaft-hole mating is constructed, and force condition analysis of the compliant assembly is performed. An automatic precise shaft-hole assembly method for aircraft assembly using 5 degrees of freedom spatial mechanism, compliance technology and servo feeding system is put forward based on the analysis. A 5 degrees of freedom passive compliant experimental equipment has been developed. Findings Application test results of the 5 degrees of freedom passive compliant experimental equipment show that the simulated canard can be mated automatically and accurately through this method with high efficiency and high quality as long as the tip of shaft enters into the range of hole’s chamfer. Practical implications This method has been used in an aircraft assembly project. The practical results show that the aircraft components with large shafts can be mated automatically and accurately through this method with high efficiency and high quality. Originality/value This paper presents a new method and designs a new assembly system to realize the assembly of the aircraft components with large shafts. The research will promote the automation of fuselage assembly.


2019 ◽  
Vol 40 (6) ◽  
pp. 819-831
Author(s):  
Chicheng Liu ◽  
Libin Song ◽  
Ken Chen ◽  
Jing Xu

Purpose This paper aims to present an image-based visual servoing algorithm for a multiple pin-in-hole assembly. This paper also aims to avoid the matching and tracking of image features and the remaining robust against image defects. Design/methodology/approach The authors derive a novel model in the set space and design three image errors to control the 3 degrees of freedom (DOF) of a single-lug workpiece in the alignment task. Analytic computations of the interaction matrix that link the time variations of the image errors to the single-lug workpiece motions are performed. The authors introduce two approximate hypotheses so that the interaction matrix has a decoupled form, and an auto-adaptive algorithm is designed to estimate the interaction matrix. Findings Image-based visual servoing in the set space avoids the matching and tracking of image features, and these methods are not sensitive to image effects. The control law using the auto-adaptive algorithm is more efficient than that using a static interaction matrix. Simulations and real-world experiments are performed to demonstrate the effectiveness of the proposed algorithm. Originality/value This paper proposes a new visual servoing method to achieve pin-in-hole assembly tasks. The main advantage of this new approach is that it does not require tracking or matching of the image features, and its supplementary advantage is that it is not sensitive to image defects.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 769
Author(s):  
Carlos Llopis-Albert ◽  
Francisco Rubio ◽  
Francisco Valero

This research aims to design an efficient algorithm leading to an improvement of productivity by posing a multi-objective optimization, in which both the time consumed to carry out scheduled tasks and the associated costs of the autonomous industrial system are minimized. The algorithm proposed models the kinematics and dynamics of the industrial robot, provides collision-free trajectories, allows to constrain the energy consumed and meets the physical characteristics of the robot (i.e., restriction on torque, jerks and power in all driving motors). Additionally, the trajectory tracking accuracy is improved using an adaptive fuzzy sliding mode control (AFSMC), which allows compensating for parametric uncertainties, bounded external disturbances and constraint uncertainties. Therefore, the system stability and robustness are enhanced; thus, overcoming some of the limitations of the traditional proportional-integral-derivative (PID) controllers. The trade-offs among the economic issues related to the assembly line and the optimal time trajectory of the desired motion are analyzed using Pareto fronts. The technique is tested in different examples for a six-degrees-of-freedom (DOF) robot system. Results have proved how the use of this methodology enhances the performance and reliability of assembly lines.


2019 ◽  
Vol 39 (1) ◽  
pp. 154-164 ◽  
Author(s):  
Junxia Jiang ◽  
Chen Bian ◽  
Yunbo Bi ◽  
Yinglin Ke

PurposeThe purpose of this paper is to design, analyze and optimize a new type of inner-side working head for automatic horizontal dual-machine cooperative drilling and riveting system. The inner-side working head is the key component of automatic drilling and riveting system, and it is a challenge to design an inner-side working head which must be stiffness and stable with a compact structure to realize its functions.Design/methodology/approachAccording to the assembly structure features of large aircraft panels and riveting process requirements, a new type of inner-side working head is designed for pressure riveting. The force condition of the inner-side working head during the riveting process is analyzed and the deformation model is established. Design optimization is performed based on genetic algorithm and finite element analysis. The optimized inner-side working head is tested with automatic horizontal dual-machine cooperative drilling and riveting system.FindingsThe deformation model provides the precision compensation basis for control system. Application test results show that the automatic drilling and riveting system can realize assembly of large aircraft panel with high efficiency and quality through the inner-side working head.Research limitations/implicationsThe inner-side working head has been used in aircraft panel assembly.Practical implicationsThe inner-side working head has been used in aircraft panel assembly.Originality/valueThis paper presents the design, analysis and optimization of a new type of inner-side working head which can realize automatic riveting for aircraft panel. The research will promote the automation of aircraft panel assembly.


Author(s):  
Zhipeng Wang ◽  
Zhiqin Qian ◽  
Ziye Song ◽  
Hongzhou Liu ◽  
Wenjun Zhang ◽  
...  

Purpose Even though multi-rotor aircrafts are becoming more and more prevalent in the fields of aerial photography, agricultural spraying, disaster searching and rescuing, how to achieve higher reliability and robustness of an aircraft still poses a big challenge. It is not a rare case that a multi-rotor aircraft is severely damaged or crushed when an actuator or sensor is malfunctioned. This paper aims at the resilience of an aircraft when a rotor is malfunctioned. Design/methodology/approach The reliability of a multi-rotor aircraft can be measured in terms of stability, robustness, resilience and fault tolerance. All of these four aspects are taken into consideration to improve overall reliability of aircrafts. When a rotor malfunction occurs, the control algorithm is cable of adjusting the operation conditions of the rest of rotors to achieve system stability. Findings In this paper, the authors first present a research topic on the development of a resilient multi-robot aircraft. A multi-rotor aircraft usually possesses more actuated motions than the required degrees of freedom. Originality/value The authors proposed to equip the multi-rotor aircraft with malfunction detecting sensors, and they developed the self-repairing algorithm to re-stabilize the aircraft when a malfunction of a rotor occurs. The design concept and methods were implemented on an eight-rotor aircraft, and the performance of the proposed instrumentation and self-repairing algorithm have been verified and validated.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110033
Author(s):  
Javad Mostafaee ◽  
Saleh Mobayen ◽  
Behrouz Vaseghi ◽  
Mohammad Vahedi ◽  
Afef Fekih

This paper proposes a novel exponential hyper–chaotic system with complex dynamic behaviors. It also analyzes the chaotic attractor, bifurcation diagram, equilibrium points, Poincare map, Kaplan–Yorke dimension, and Lyapunov exponent behaviors. A fast terminal sliding mode control scheme is then designed to ensure the fast synchronization and stability of the new exponential hyper–chaotic system. Stability analysis was performed using the Lyapunov stability theory. One of the main features of the proposed controller is the finite time stability of the terminal sliding surface designed with high–order power function of error and derivative of error. The approach was implemented for image cryptosystem. Color image encryption was carried out to confirm the performance of the new hyper–chaotic system. For image encryption, the DNA encryption-based RGB algorithm was used. Performance assessment of the proposed approach confirmed the ability of the proposed hyper–chaotic system to increase the security of image encryption.


Author(s):  
Afef Hfaiedh ◽  
Ahmed Chemori ◽  
Afef Abdelkrim

In this paper, the control problem of a class I of underactuated mechanical systems (UMSs) is addressed. The considered class includes nonlinear UMSs with two degrees of freedom and one control input. Firstly, we propose the design of a robust integral of the sign of the error (RISE) control law, adequate for this special class. Based on a change of coordinates, the dynamics is transformed into a strict-feedback (SF) form. A Lyapunov-based technique is then employed to prove the asymptotic stability of the resulting closed-loop system. Numerical simulation results show the robustness and performance of the original RISE toward parametric uncertainties and disturbance rejection. A comparative study with a conventional sliding mode control reveals a significant robustness improvement with the proposed original RISE controller. However, in real-time experiments, the amplification of the measurement noise is a major problem. It has an impact on the behaviour of the motor and reduces the performance of the system. To deal with this issue, we propose to estimate the velocity using the robust Levant differentiator instead of the numerical derivative. Real-time experiments were performed on the testbed of the inertia wheel inverted pendulum to demonstrate the relevance of the proposed observer-based RISE control scheme. The obtained real-time experimental results and the obtained evaluation indices show clearly a better performance of the proposed observer-based RISE approach compared to the sliding mode and the original RISE controllers.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Samuel F. Asokanthan ◽  
Soroush Arghavan ◽  
Mohamed Bognash

Effect of stochastic fluctuations in angular velocity on the stability of two degrees-of-freedom ring-type microelectromechanical systems (MEMS) gyroscopes is investigated. The governing stochastic differential equations (SDEs) are discretized using the higher-order Milstein scheme in order to numerically predict the system response assuming the fluctuations to be white noise. Simulations via Euler scheme as well as a measure of largest Lyapunov exponents (LLEs) are employed for validation purposes due to lack of similar analytical or experimental data. The response of the gyroscope under different noise fluctuation magnitudes has been computed to ascertain the stability behavior of the system. External noise that affect the gyroscope dynamic behavior typically results from environment factors and the nature of the system operation can be exerted on the system at any frequency range depending on the source. Hence, a parametric study is performed to assess the noise intensity stability threshold for a number of damping ratio values. The stability investigation predicts the form of threshold fluctuation intensity dependence on damping ratio. Under typical gyroscope operating conditions, nominal input angular velocity magnitude and mass mismatch appear to have minimal influence on system stability.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3653
Author(s):  
Lilia Sidhom ◽  
Ines Chihi ◽  
Ernest Nlandu Kamavuako

This paper proposes an online direct closed-loop identification method based on a new dynamic sliding mode technique for robotic applications. The estimated parameters are obtained by minimizing the prediction error with respect to the vector of unknown parameters. The estimation step requires knowledge of the actual input and output of the system, as well as the successive estimate of the output derivatives. Therefore, a special robust differentiator based on higher-order sliding modes with a dynamic gain is defined. A proof of convergence is given for the robust differentiator. The dynamic parameters are estimated using the recursive least squares algorithm by the solution of a system model that is obtained from sampled positions along the closed-loop trajectory. An experimental validation is given for a 2 Degrees Of Freedom (2-DOF) robot manipulator, where direct and cross-validations are carried out. A comparative analysis is detailed to evaluate the algorithm’s effectiveness and reliability. Its performance is demonstrated by a better-quality torque prediction compared to other differentiators recently proposed in the literature. The experimental results highlight that the differentiator design strongly influences the online parametric identification and, thus, the prediction of system input variables.


Sign in / Sign up

Export Citation Format

Share Document