Strengthened passivation and mechanism of 316L stainless steel in hot diluted sulfuric acid solution by connecting to Pd electrode

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Huizhong Zhang ◽  
Yu Zuo ◽  
Pengfei Ju ◽  
Jian Zhang ◽  
Xuhui Zhao ◽  
...  

Purpose The purpose of this paper is to study the variations of composition and properties of the passive film on 316 L stainless steel surface in 80°C, 0.5 mol L-1 H2SO4 + 2 mg L-1 NaF solution, is helpful to understand the mechanisms of corrosion resistancethe of plated Pd on 316 L ss. Design/methodology/approach The variations of composition and properties of the passive film on 316 L stainless steel surface in 80°C, 0.5 mol L-1 H2SO4 + 2 mg L-1 NaF solution after connected to Pd electrode were studied with methods of potential monitor, X-ray photoelectron spectroscopy analysis and electrochemical impedance spectrum (EIS) measurement. Findings By connecting to a Pd electrode, the potential of the SS sample increased from the active region to the passive region. By connecting to the Pd electrode, the contents of Cr, Cr(OH)3 and Fe3O4 in passive film increased obviously. With increased Pd/SS area ratio, the Cr(OH)3 content in passive film increased but the Fe3O4 content changed little. The results show that after connecting to Pd the corrosion resistance of the passive film on 316 L stainless steel increases obviously, which may be attributed to the more compact passive film because of higher Cr, Cr(OH)3 and Fe3O4 contents and less point defects in the film. Originality/value The effects and mechanism of Pd on passivation of SS was studied.

2018 ◽  
Vol 65 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Edyta Owczarek

Purpose The purpose of this paper is to evaluate and compare the protective, anticorrosion properties of silane- and polyrhodanine-based bilayer coatings pRh/IBTES and IBTES/pRh on an X20Cr13 stainless steel substrate. Design/methodology/approach IBTES/pRh and pRh/IBTES have been coated using the dip-coating method and the cyclic voltammetry technique. The electrochemical measurements have been used to assess the anticorrosion properties of the resulting bilayer coatings. Morphological and chemical characterizations have been performed using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Findings The results clearly show that the combination of both the deposits of polyrhodanine and silane yields a more protective structure that affords better protection against corrosion with time. The best barrier properties are achieved by the substrates coated with polyrhodanine film upon which silane is subsequently adsorbed – the pRh/IBTES bilayer coating. Originality/value The paper reveals that the procedure of modification of silane films with polyrhodanine had a marked effect on the anti-corrosive performance of the obtained two types of bilayers coatings (pRh/IBTES, IBTES/pRh) applied on a stainless steel surface. The coating where polyrhodanine was first electrodeposited on the steel surface and then the silane layer adsorbed (pRh/IBTES) achieved the best protective properties.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ming Liu ◽  
Jun Li ◽  
Danping Li ◽  
Lierui Zheng

Purpose At present, carbonated drinks such as cola are especially favored by the younger generation. But because of its acid, it often leads to tooth demineralization, resulting in “cola tooth”. However, the influence of cola on the corrosion resistance of passive film of TiA10 alloy restorative materials is rarely reported. The purpose of this study was to analysis the corrosion resistance, composition of the passive film of TA10 alloy in different concentrations of Cola. Design/methodology/approach The passive behavior of TA10 alloy in artificial saliva (AS) and Cola was studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, cyclic voltammetry, Mott-Schottky techniques and combined with X-ray photoelectron spectroscopy and Auger electron spectroscopy (AES) surface analysis. Findings With the increase of cola content, the self-corrosion current density of the alloy increases sharply, and the corrosion resistance of the passive film is the best in AS, while Rp in cola is reduced to half of that in AS. The thickness of the passive film in AS, AS +cola and cola is about 9.5 nm, 7.5 nm and 6 nm, respectively. The passive film in cola has more defects and the carrier density is 1.55 times as high as that in AS. Cola can weaken the formation process of the protected oxide, promote the formation of high valence Ti-oxides and increase the content of Mo-oxides in the passive film. Originality/value These results have important guiding significance for the safe use of the alloy in the complex oral environments.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng-xue Yu ◽  
Rui-jun Zhang ◽  
Yong-fu Tang ◽  
Yan-ling Ma ◽  
Wen-chao Du

Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF60.75 g·L−1, NaF 1.25 g·L−1, MgSO41.0 g/L, and tetra-n-butyl titanate (TBT) 0.08 g·L−1. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrum (FT-IR) were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS). Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guanghui Yi ◽  
Dajiang Zheng ◽  
Guang-Ling Song

Purpose The purpose of this paper is to address the concern of some stainless steel users. To understand the effect of surface white spots on corrosion performance of stainless steel. Design/methodology/approach White spots appeared on some component surfaces made of 316 L stainless steel in some industrial applications. To address the concern about the pitting performance in the spot areas, the pitting corrosion potential and corrosion resistance were measured in the spot and non-spot areas by means of potentiodynamic polarization and electrochemical impedance spectroscopy and the two different surface characteristics were analytically compared by using optical microscopy, laser confocal microscopy, scanning electron microscopy, x-ray diffraction, energy dispersive spectroscopy and auger energy spectroscopy. The results indicated that the pitting performance of the 316 L stainless steel was not negatively influenced by the spots and the white spots simply resulted from the slightly different surface morphology in the spot areas. Findings The white spots are actually the slightly rougher surface areas with some carbon-containing species. They do not reduce the pitting resistance. Interestingly, the white spot areas even have slightly improved general corrosion resistance. Research limitations/implications Not all surface contamination or roughening can adversely affect the corrosion resistance of stainless steel. Practical implications Stainless steel components with such surface white spots are still qualified products in terms of corrosion performance. Originality/value The surface spot of stainless steel was systematically investigated for the first time for its effect on corrosion resistance and the conclusion was new to the common knowledge.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jun He ◽  
Lin Chen ◽  
Yanjing Su

Purpose The purpose of this study is to elucidate the effect of Mn addition on the corrosion behavior of stainless steel. Design/methodology/approach Chronoamperometry, quasi-steady-state polarization and electrochemical impedance spectroscopy were used to investigate the corrosion behavior of Mn added A13Cr-HS sample and original S13Cr samples. In addition, the corrosion product film was characterized by a field emission scanning electron microscope equipped with energy-dispersive spectroscopy and X-ray photoelectron spectroscopy. Findings The A13Cr-HS sample with 8 wt.% Mn addition maintained good general corrosion resistance in both acidic and alkaline solutions compared to the original S13Cr sample. Additionally, the A13Cr-HS sample had good pitting resistance in an alkaline solution containing Cl−, but a weaker resistance in an acidic solution. Originality/value The influence of Mn addition on the formation mechanism of the passive film was systematically analyzed.


CORROSION ◽  
10.5006/3230 ◽  
2020 ◽  
Vol 76 (9) ◽  
pp. 884-890
Author(s):  
Renata B. Soares ◽  
Wagner R.C. Campos ◽  
Pedro L. Gastelois ◽  
Waldemar A.A. Macedo ◽  
Luís F.P. Dick ◽  
...  

The electrochemical behavior and the electronic properties of passive films formed on a super martensitic stainless steel (SMSS) used in oil and gas industries were investigated in aqueous 0.6 M and 2.1 M NaCl solutions with additions of sodium acetate and acetic acid (pH 4.5). Open-circuit potential transients, electrochemical impedance spectroscopy, cyclic voltammetry, and x-ray photoelectron spectroscopy were measured to characterize the passive film formed on SMSS. The electrochemical behavior of the steel in an aqueous solution of 0.6 M NaCl presented the highest pitting potential and the highest polarization resistance in relation to the NaCl/NaAc solution. The passive film of SMSS in an aqueous solution of NaCl presented a thickness of 18.40 nm, three times the thickness of the oxide film in NaCl/NaAc, and consisted of FeO, Cr2O3, MoO2, and spinels such as FeCr2O4 species that are a p-type semiconductor, but may also contain a small fraction of the Fe2O3 and MoO3 oxides. Additionally, it was shown that the passive layer after immersion in a saline solution also contains hydroxides such as FeOOH and Cr(OH)3.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shixiong Wu ◽  
Zhiming Gao ◽  
Da-Hai Xia ◽  
Meijun Wu ◽  
Yingjie Liu ◽  
...  

Purpose This paper aims to study the effect of temperature on the process and kinetic parameters of the hydrogen evolution reaction of X80 under cathodic protection (CP) in 3.5% NaCl solution. Design/methodology/approach Potentiodynamic polarization combined with the hydrogen permeation test is used to analyze the hydrogen evolution reaction (HER) process and the rate-determining step for which is diagnosed through the electrochemical impedance spectrum method. Then, the influence of temperature on kinetic parameters of HER can be known from the results obtained by using the Iver-Pickering-Zamenzadeh model for data analysis. Findings The results show that the HER proceeds through Volmer–Tafel route with the Volmer reaction acting as the rate-controlling step; Increasing temperature gives a higher activity of the HER on X80, it also accelerates the hydrogen desorption and diffusion of hydrogen into the metal. Originality/value There exist few studies on the topic of how temperature affects the HER process. It is imperative to conduct a relevant study to give some instruction in cathodic protection system design and this paper fulfills this need.


2009 ◽  
Vol 79-82 ◽  
pp. 2251-2254
Author(s):  
Xue Ting Chang ◽  
Shou Gang Chen ◽  
Yan Sheng Yin

Electrochemical impedance spectrum (EIS) and potentiodynamic polarization curve were applied to invest the corrosive behavior of Fe3Al/ZrO2 composites with different components in marine microbial medium. The results indicated that the existence of microbiology negatively moved the open circle potential. When the composites contained 30% (wt %) ZrO2, the passive film on electrodes surface was the thickest one, even after 25 days the material was still protected. When the content of ZrO2 was 90%, Fe3Al was in the least content, after 25 days the passive film has disappeared, but the material was still not eroded because of the high hardness and corrosion-resistant properties of ZrO2. When the content of ZrO2 was 80%, the passive film was partly damaged, which could lead to more serious local corrosion.


Sign in / Sign up

Export Citation Format

Share Document