scholarly journals Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sheng-xue Yu ◽  
Rui-jun Zhang ◽  
Yong-fu Tang ◽  
Yan-ling Ma ◽  
Wen-chao Du

Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF60.75 g·L−1, NaF 1.25 g·L−1, MgSO41.0 g/L, and tetra-n-butyl titanate (TBT) 0.08 g·L−1. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrum (FT-IR) were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS). Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

2019 ◽  
Vol 26 (10) ◽  
pp. 1950080
Author(s):  
JIBO JIANG ◽  
HAOTIAN CHEN ◽  
LIYING ZHU ◽  
YAOXIN SUN ◽  
WEI QIAN ◽  
...  

Graphene oxide (GO) sheet and ultrasonic field (UF) were successfully employed to produce Ni–B/GO and UF–Ni–B/GO composite coatings on Q235 mild steel by electroless plating. The composite coatings’ structure and surface morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Results showed that GO was successfully co-deposited in the Ni–B alloy. Moreover, UF–Ni–B/GO composite coatings have smoother surface and thicker cross-section than others. The microhardness and corrosion resistance of the sample coatings were determined using Vickers hardness tests, Tafel electrochemical tests and electrochemical impedance measurements (EIS) in 3.5[Formula: see text]wt.% NaCl solution to receive the effect of GO and ultrasonic. The findings indicated that UF–Ni–B/GO exhibited optimum hardness (856[Formula: see text]HV) and enhanced corrosion resistance (6.38 [Formula: see text][Formula: see text] over the Ni–B and Ni–B/GO coatings. Due to these interesting properties of the coating, it could be used as a protective material in the automotive and aerospace industries for parts of machines that were manipulated in high temperature and corrosive environments.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Zhihong Zhang ◽  
Baoying Wang ◽  
Yijing Zhang ◽  
Gehong Zhang ◽  
Yujing Wang

A novel heteropoly acid salt, Na6[Ni(Mo11ZrO39)]·20H2O, has been synthesized by the means of acidification and adding the reactants into the solution step by step. The heteropoly compound was characterized by elemental analysis, TGA/DSC, infrared spectrum, ultraviolet spectrum, X-ray diffraction, and SEM. Its protonic conduction was measured by the means of the electrochemical impedance spectrum. The results showed that it belongs to the Keggin type, and its conductivity value was 1.23 × 10–2 S/cm at 23°C when the relative humidity was 60%, and the conductivity enhanced with the elevated temperature. Its proton conduction mechanism was in accordance with vehicle mechanism, and the activation energy was 27.82 kJ/mol.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2647
Author(s):  
Madiha Ahmed ◽  
Yuming Qi ◽  
Longlong Zhang ◽  
Yanxia Yang ◽  
Asim Abas ◽  
...  

The objectives of this study were to reduce the corrosion rate and increase the cytocompatibility of AZ31 Mg alloy. Two coatings were considered. One coating contained MgO (MAO/AZ31). The other coating contained Cu2+ (Cu/MAO/AZ31), and it was produced on the AZ31 Mg alloy via microarc oxidation (MAO). Coating characterization was conducted using a set of methods, including scanning electron microscopy, energy-dispersive spectrometry, X-ray photoelectron spectroscopy, and X-ray diffraction. Corrosion properties were investigated through an electrochemical test, and a H2 evolution measurement. The AZ31 Mg alloy with the Cu2+-containing coating showed an improved and more stable corrosion resistance compared with the MgO-containing coating and AZ31 Mg alloy specimen. Cell morphology observation and cytotoxicity test via Cell Counting Kit-8 assay showed that the Cu2+-containing coating enhanced the proliferation of L-929 cells and did not induce a toxic effect, thus resulting in excellent cytocompatibility and biological activity. In summary, adding Cu ions to MAO coating improved the corrosion resistance and cytocompatibility of the coating.


2009 ◽  
Vol 79-82 ◽  
pp. 879-882
Author(s):  
Ji Hui Xu ◽  
Xin Wang ◽  
Jing Wang ◽  
Qiu Ju Zheng

The Cerium-based conversion coating is formed on the industrial aluminum(1060) by using chemical immersion. The microstructures of the conversion coating have been examined by scanning electron microscopy(SEM). The electrochemical measurement result shows that the corrosion resistance of aluminum is significantly improved after the conversion coating was formed. The result of X-ray photoelectron spectroscopy (XPS) shows that the cerium conversion coating mainly consisted of oxide of aluminum, CeO2 and TiO2. The formation mechanism of the Cerium-based conversion coating is investigated.


2018 ◽  
Vol 778 ◽  
pp. 251-255
Author(s):  
Irfan Aziz ◽  
Qi Zhang

The present study investigates the effect of lanthanide chlorides conversion coatings on the corrosion response of the 2009 Al alloy and SiCp reinforced 2009 Al MMCs. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization studies showed that the localized corrosion resistance increased after treatments with solutions having various combinations of CeCl3.7H2O and LaCl3.7H2O, with maximum increase noticed for 5000ppm CeCl3.7H2O. It was found that the protection degree effect obtained under similar coating conditions for 25 vol.% SiCp/2009 Al was relatively higher than 15vol.% SiCp/ 2009 Al MMC, but both of them were less than that of the unreinforced alloy. Scanning electron microscopy (SEM) accompanied with energy dispersive spectroscopy (EDS) analysis revealed the deposition of Ce and/ or La oxides/ hydroxides on cathodic intermetallics/ SiCp and the existence of crevices at the SiCp/ matrix interfaces. X-ray photoelectron spectroscopy (XPS) results indicated that Ce was incorporated as Ce3+ and Ce4+ species in the coatings.


Coatings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 259 ◽  
Author(s):  
Jiaping Han ◽  
Carsten Blawert ◽  
Shawei Tang ◽  
Junjie Yang ◽  
Jin Hu ◽  
...  

Calcium phosphate (CaPh) coatings are considered promising surface treatments for Mg-based implants. Normally, the phase conversion process of CaPh compounds occurs during immersion in simulated body fluid (SBF) and allows the easy penetration of a corrosive medium. To solve the issue, pre-treatment is often performed, creating an effective barrier that further improves the corrosion resistance of the underlying Mg. In the present work three pre-treatments including hydrothermal treatment, anodization, and plasma electrolytic oxidation (PEO) were performed on pure Mg prior to CaPh deposition. Results indicated that the composition, morphology, and thickness of the CaPh coatings were strongly influenced by the pre-treatments. Dicalcium phosphate dihydrate (DCPD) was formed on PEO surface, whilst DCPD and hydroxyapatite (HA) were deposited on hydrothermally prepared and anodized surfaces. HA could be deposited on the studied samples during immersion in SBF. The electrochemical impedance spectrum indicated that CaPh coating combined with PEO pre-treatment had the highest corrosion resistance at 120 h due to the superior barrier properties conferred by the PEO layer.


2011 ◽  
Vol 308-310 ◽  
pp. 2458-2462 ◽  
Author(s):  
Li Hui Yang ◽  
Mi Lin Zhang ◽  
Cun Guo Lin ◽  
Jian Hua Wu

Molybdate conversion coatings were prepared on AZ31B Mg alloy in a molybdate based solution with additives of sodium fluoride (NaF) or lanthanum nitrate (La(NO3)3). The effects of F- and La3+ additives on the morphology and on the corrosion resistance of the molybdate coatings were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis. The results revealed that these additives could accelerate the deposition of molybdenum on the surface of AZ31B magnesium alloy. It can be seen that the composite conversion coatings consist of many spherical particles. It is also found that the corrosion resistance is greatly improved after molybdate treatment. The films formed in F- additive solution showed lower corrosion current density than in La3+ additive solution.


2015 ◽  
Vol 1090 ◽  
pp. 79-83
Author(s):  
Yan Hong He ◽  
Zhen Duo Cui ◽  
Xian Jin Yang ◽  
Sheng Li Zhu ◽  
Zhao Yang Li ◽  
...  

In this paper, Pd ions doped cerium conversion coating (CeCC/Pd) was deposited on AA2219-T87 aluminum alloy by electroplating. The microstructure and composition of the coating were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). Corrosion behavior of AA2219-T87 aluminum alloy with the coating was investigated in 3.5wt.% NaCl solution at the room temperature. XRD and XPS results indicate the existence of cerium-oxide and palladium-oxide in the CeCC/Pd. Polarization curves show that the CeCC/Pd exhibits excellent corrosion resistance. The corrosion current density of the CeCC/Pd decreases by two orders of magnitude compared with the CeCC. The improvement of corrosion resistance would be attributed to the small grain size, good compactness and adhesive strength of the composite coatings.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1233 ◽  
Author(s):  
Nader El-Bagoury ◽  
Sameh I. Ahmed ◽  
Ola Ahmed Abu Ali ◽  
Shimaa El-Hadad ◽  
Ahmed M. Fallatah ◽  
...  

The effect of microstructure and chemistry on the kinetics of passive layer growth and passivity breakdown of some Ti-based alloys, namely Ti-6Al-4V, Ti-6Al-7Nb and TC21 alloys, was studied. The rate of pitting corrosion was evaluated using cyclic polarization measurements. Chronoamperometry was applied to assess the passive layer growth kinetics and breakdown. Microstructure influence on the uniform corrosion rate of these alloys was also investigated employing dynamic electrochemical impedance spectroscopy (DEIS). Corrosion studies were performed in 0.9% NaCl solution at 37 °C, and the obtained results were compared with ultrapure Ti (99.99%). The different phases of the microstructure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Chemical composition and chemistry of the corroded surfaces were studied using X-ray photoelectron spectroscopy (XPS) analysis. For all studied alloys, the microstructure consisted of α matrix, which was strengthened by β phase. The highest and the lowest values of the β phase’s volume fraction were recorded for TC21 and Ti-Al-Nb alloys, respectively. The susceptibility of the investigated alloys toward pitting corrosion was enhanced following the sequence: Ti-6Al-7Nb < Ti-6Al-4V << TC21. Ti-6Al-7Nb alloy recorded the lowest pitting corrosion resistance (Rpit) among studied alloys, approaching that of pure Ti. The obvious changes in the microstructure of these alloys, together with XPS findings, were adopted to interpret the pronounced variation in the corrosion behavior of these materials.


Coatings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 307 ◽  
Author(s):  
Na Wang ◽  
Xu Yin ◽  
Jing Zhang ◽  
Huiying Gao ◽  
Xinlin Diao ◽  
...  

In this paper, graphene oxide (GO) was grafted with sodium tripolyphosphate (STP) to achieve a new anti-corrosive pigment (STG) with homogenous dispersion in waterborne epoxy (EP). The results obtained from Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) revealed that STP was successfully combined with GO by chemical bonding. The corrosion resistance of EP, GO/EP and STG/EP coatings on carbon steel substrates was investigated via electrochemical impedance spectroscopy (EIS) and salt spray test. The EIS results showed that the impedance value of coating with 0.7 wt.% STG reached 1.019 × 109 Ω∙cm2, which was considerably higher than that of neat waterborne EP coatings. Salt spray test results revealed once again that STG (0.7 wt.%)/EP coating had superior corrosion resistance. Besides, the STG (0.7 wt.%)/EP coated sample showed the highest adhesion strength between coating and substrate.


Sign in / Sign up

Export Citation Format

Share Document