Unmanned aircraft automatic flight control algorithm in loop manoeuvre

2018 ◽  
Vol 90 (6) ◽  
pp. 877-884
Author(s):  
Tomasz Rogalski

Purpose This paper aims to present the idea of an automatic control system dedicated to small manned and unmanned aircraft performing manoeuvres other than those necessary to perform a so-called standard flight. The character of these manoeuvres and the range of aircraft flight parameter changes restrict application of standard control algorithms. In many cases, they also limit the possibility to acquire complete information about aircraft flight parameters. This paper analyses an alternative solution that can be applied in such cases. The loop manoeuvre, an element of aerobatic flight, was selected as a working example. Design/methodology/approach This paper used theoretical discussion and breakdowns to create basics for designing structures of control algorithms. A simplified analytical approach was then applied to tune regulators. Research results were verified in a series of computer-based software-in-the-loop rig test computer simulations. Findings The structure of the control system enabling aerobatic flight was found and the method for tuning regulators was also created. Practical implications The findings could be a foundation for autopilots working in non-conventional flight scenarios and automatic aircraft recovery systems. Originality/value This paper presents the author’s original approach to aircraft automated control where high precision control is not the priority and flight parameters cannot be precisely measured or determined.

2020 ◽  
Vol 92 (8) ◽  
pp. 1215-1224
Author(s):  
Tomasz Rogalski ◽  
Paweł Rzucidło ◽  
Jacek Prusik

Purpose The paper aims to present an idea of automatic control algorithms dedicated to both small manned and unmanned aircraft, capable to perform spin maneuver automatically. This is a case of maneuver far away from so-called standard flight. The character of this maneuver and the range of aircraft flight parameters changes restrict application of standard control algorithms. Possibility of acquisition full information about aircraft flight parameters is limited as well in such cases. This paper analyses an alternative solution that can be applied in some specific cases. Design/methodology/approach The paper uses theoretical discussion and breakdowns to create basics for development of structures of control algorithms. Simplified analytical approach was applied to tune regulators. Results of research were verified in series of software-in-the loop, computer simulations. Findings The structure of the control system enabling aerobatic flight (spin flight as example selected) was found and the method how to tune regulators was presented as well. Practical implications It could be a fundament for autopilots working in non-conventional flight states and aircraft automatic recovery systems. Originality/value The paper presents author’s original approach to aircraft automatic control when high control precision is not the priority, and not all flight parameters can be precisely measured.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tomasz Rogalski ◽  
Paweł Rzucidło ◽  
Stanisław Noga ◽  
Jacek Prusik

Purpose The purpose of this paper is to present the idea of automatic flight control algorithms capable of performing an Immelmann turn manoeuvre automatically. This is a case of a manoeuvre far removed from so-called standard flight. The character of this manoeuvre and the range of changes in the aircraft flight parameters restrict the application of standard control algorithms. Furthermore, the possibility of acquiring full and detailed information about the aircraft’s flight parameters is limited in such cases. This paper seeks to analyse an alternative solution that can be applied in some specific cases. Design/methodology/approach This paper uses theoretical discussion and breakdowns to create the basics for development of structures of control algorithms. A simplified analytical approach was applied to tune regulators and the results of the research were verified in a series of software-in-the loop computer simulations. Findings The structure of the control system enabling aerobatic flight (with the Immelmann turn as the selected example) was identified and the method for tuning the regulators is also presented. Practical implications It could serve as a foundation for autopilots working in non-conventional flight states and aircraft automatic recovery systems. Originality/value This paper presents the author’s original approach to aircraft automatic control when high control precision is not the priority and not all flight parameters can be precisely measured.


2016 ◽  
Vol 88 (6) ◽  
pp. 799-809 ◽  
Author(s):  
Emre Kiyak

Purpose This study aims to present a method for the conceptual design and simulation of an aircraft flight control system. Design/methodology/approach The design methodology is based on particle swarm optimization (PSO). PSO can be used to improve the performance of conventional controllers. The aim of the present study is threefold. First, it attempts to detect and isolate faults in an aircraft model. Second, it is to design a proportional (P) controller, a proportional derivative (PD) controller, a proportional-integral (PI) controller and a fuzzy controller for an aircraft model. Third, it is to design a PD controller for an aircraft using a PSO algorithm. Findings Conventional controllers, an intelligent controller and a PD controller-based PSO were investigated for flight control. It was seen that the P controller, the PI controller and the PD controller-based PSO caused overshoot. These overshoots were 18.5, 87.7 and 2.6 per cent, respectively. Overshoot was not seen using the PD controller or fuzzy controller. Steady state errors were almost zero for all controllers. The PD controller had the best settling time. The fuzzy controller was second best. The PD controller-based PSO was the third best, but the result was close to the others. Originality/value This study shows the implementation of the present algorithm for a specified space mission and also for study regarding variation of performance parameters. This study shows fault detection and isolation procedures and also controller gain choice for a flight control system. A comparison between conventional controllers and PD-based PSO controllers is presented. In this study, sensor fault detection and isolation are carried out, and, also, root locus, time domain analysis and Routh–Hurwitz methods are used to find the conventional controller gains which differ from other studies. A fuzzy controller is created by the trial and error method. Integral of squared time multiplied by squared error is used as a performance function type in PSO.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ayaz Ahmed Hoshu ◽  
Liuping Wang ◽  
Alex Fisher ◽  
Abdul Sattar

PurposeDespite of the numerous characteristics of the multirotor unmanned aircraft systems (UASs), they have been termed as less energy-efficient compared to fixed-wing and helicopter counterparts. The purpose of this paper is to explore a more efficient multirotor configuration and to provide the robust and stable control system for it.Design/methodology/approachA heterogeneous multirotor configuration is explored in this paper, which employs a large rotor at the centre to provide majority of lift and three small tilted booms rotors to provide the control. Design provides the combined characteristics of both quadcopters and helicopters in a single UAS configuration, providing endurance of helicopters keeping the manoeuvrability, simplicity and control of quadcopters. In this paper, rotational as well as translational dynamics of the multirotor are explored. Cascade control system is designed to provide an effective solution to control the attitude, altitude and position of the rotorcraft.FindingsOne of the challenging tasks towards successful flight of such a configuration is to design a stable and robust control system as it is an underactuated system possessing complex non-linearities and coupled dynamics. Cascaded proportional integral (PI) control approach has provided an efficient solution with stable control performance. A novel motor control loop is implemented to ensure enhanced disturbance rejection, which is also validated through Dryden turbulence model and 1-cosine gust model.Originality/valueRobustness and stability of the proposed control structure for such a dynamically complex UAS configuration is demonstrated with stable attitude and position performance, reference tracking and enhanced disturbance rejection.


2019 ◽  
Vol 92 (2) ◽  
pp. 264-270
Author(s):  
Firat Sal

Purpose The purpose of this paper presents the effects of actively morphing root chord and taper on the energy of the flight control system (i.e. FCS). Design/methodology/approach Via regarding previously mentioned purposes, sophisticated and realistic helicopter models are benefitted to examine the energy of the FCS. Findings Helicopters having actively morphing blade root chord length and blade taper consume less control energy than the ones having one of or any of passively morphing blade root chord length and blade taper. Practical implications Actively morphing blade root chord length and blade taper can be used for cheaper helicopter operations. Originality/value The main originality of this paper is applying active morphing strategy on helicopter blade root chord and blade taper. In this paper, it is also found that using active morphing strategy on helicopter blade root chord and blade taper reasons less energy consumption than using either passively morphing blade root chord length plus blade taper or not any. This causes also less fuel consumption and green environment.


2019 ◽  
Vol 91 (3) ◽  
pp. 407-419
Author(s):  
Jerzy Graffstein ◽  
Piotr Maslowski

Purpose The main purpose of this work was elaboration and verification of a method of assessing the sensitivity of automatic control laws to parametric uncertainty of an airplane’s mathematical model. The linear quadratic regulator (LQR) methodology was used as an example design procedure for the automatic control of an emergency manoeuvre. Such a manoeuvre is assumed to be pre-designed for the selected airplane. Design/methodology/approach The presented method of investigating the control systems’ sensitivity comprises two main phases. The first one consists in computation of the largest variations of gain factors, defined as differences between their nominal values (defined for the assumed model) and the values obtained for the assumed range of parametric uncertainty. The second phase focuses on investigating the impact of the variations of these factors on the behaviour of automatic control in the manoeuvre considered. Findings The results obtained allow for a robustness assessment of automatic control based on an LQR design. Similar procedures can be used to assess in automatic control arrived at through varying design methods (including methods other than LQR) used to control various manoeuvres in a wide range of flight conditions. Practical implications It is expected that the presented methodology will contribute to improvement of automatic flight control quality. Moreover, such methods should reduce the costs of the mathematical nonlinear model of an airplane through determining the necessary accuracy of the model identification process, needed for assuring the assumed control quality. Originality/value The presented method allows for the investigation of the impact of the parametric uncertainty of the airplane’s model on the variations of the gain-factors of an automatic flight control system. This also allows for the observation of the effects of such variations on the course of the selected manoeuvre or phase of flight. This might be a useful tool for the design of crucial elements of an automatic flight control system.


Sign in / Sign up

Export Citation Format

Share Document