Comparison of different fidelity mass analyses

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jacek Mieloszyk ◽  
Andrzej Tarnowski ◽  
Tomasz Goetzendorf-Grabowski ◽  
Mariusz Kowalski ◽  
Bartłomiej Goliszek

Purpose Aircraft structure mass estimation is a very important issue in aerospace. Multiple methods of different fidelity are available, which give results with varying accuracy. Sometimes these methods are giving a high discrepancy of estimated mass compared to the real mass of the structure. The discrepancy is especially noticeable in the case of small aircraft with a composite structure. Their mass properties highly depend not only on the material but also on technology and the human factor. Moreover, methods of mass estimation for unmanned aerial vehicle (UAV) platforms are even less established and examined. The purpose of this paper is to present and discuss various methods of mass estimation. Design/methodology/approach The paper presents different procedures of mass estimation for small UAVs with a composite structure. Beginning from the simplest one, where mass is estimated basing on a single equation and finishing with a mass estimation based on finite element method model and three-dimensional computer-aided design model. The results from all methods are compared with the airworthy aircraft and conclusions are discussed. Findings Mass of flying aircraft was estimated with different methods and compared. It revealed levels of accuracy of the investigated methods. Moreover, the influence on structure mass of human factor, glueing and painting is underlined. Practical implications Mass of the structure is a key factor in aerospace, which influences the performance of the aircraft. Thorough knowledge about the accuracy of the mass estimation methods and possible sources of discrepancies in mass analyses provides an essential tool for designers, which can be used with confidence and allows for the development of new cutting-edge constructions. Originality/value There are very few comparisons of mass estimation methods with an actual mass of manufactured and functional airframes. Additionally, mass estimation inaccuracies based on technological issues are presented, which is seldom done.

2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


2019 ◽  
Vol 25 (5) ◽  
pp. 857-863
Author(s):  
Fusong Yuan ◽  
Yao Sun ◽  
Lei Zhang ◽  
Yuchun Sun

Purpose The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy. Design/methodology/approach Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated. Findings The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively. Originality/value The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.


2020 ◽  
Vol 26 (7) ◽  
pp. 1227-1235 ◽  
Author(s):  
Taehun Kim ◽  
Guk Bae Kim ◽  
Hyun Kyung Song ◽  
Yoon Soo Kyung ◽  
Choung-Soo Kim ◽  
...  

Purpose This study aims to systemically evaluate morphological printing errors between computer-aided design (CAD) and reference models fabricated using two different three-dimensional printing (3DP) technologies with hard and soft materials. Design/methodology/approach The reference models were designed to ensure simpler and more accurate measurements than those obtained from actual kidney simulators. Three reference models, i.e. cube, dumbbell and simplified kidney, were manufactured using photopolymer jetting (PolyJet) with soft and hard materials and multi-jet printing (MJP) with hard materials. Each reference model was repeatably measured five times using digital calipers for each length. These values were compared with those obtained using CAD. Findings The results demonstrate that the cube models with the hard material of MJP and hard and soft materials of PolyJet were smaller (p = 0.022, 0.015 and 0.057, respectively). The dumbbell model with the hard material of MJP was smaller (p = 0.029) and that with the soft material of PolyJet was larger (p = 0.020). However, the dumbbell with the hard material of PolyJet generated low errors (p = 0.065). Finally, the simplified kidney models with the hard material of MJP and soft materials of PolyJet were smaller (p = 0.093 and 0.021) and that with the hard material of PolyJet was opposite to the former models (p = 0.043). Originality/value This study, to the best of authors’ knowledge, is the first to determine the accuracy between CAD and reference models fabricated using two different 3DP technologies with multi-materials. Thus, it serves references for surgical applications as simulators and guides that require accuracy.


2020 ◽  
Vol 32 (6) ◽  
pp. 921-934
Author(s):  
Liang Ruixin ◽  
Joanne Yip ◽  
Winnie Yu ◽  
Lihua Chen ◽  
Newman Lau

PurposeThe breasts are mainly fatty and connective tissues with no muscles that directly support them, so wearing sports bras is one of the most effective means of alleviating the discomfort of breast movement and potential injury during vigorous physical exercise. However, the design and development processes of traditional sports bras are time-consuming and costly. Hence, a novel method of simulating the static contact pressure between a sports bra and women’s body based on the finite element (FE) and artificial neural network (ANN) models is developed in this study to contribute to the design considerations of sports bras.Design/methodology/approachThree-dimensional FE models of a female subject and sports bras with different fabric properties are developed to determine the amount of contact pressure exerted onto the body. The FE results are then verified by measuring the amount of pressure exerted by the sports bra on the skin with pressure sensors. The Taguchi technique is used to effectively reduce the number of trials from 625 to only 25 cases. These 25 results obtained through FE modelling are then used to provide the training set for the ANNs. Finally, a comparison between the FE and ANN results is carried out.FindingsA novel model of the static contact pressure between a sports bra and human subject based on the FE and ANN methods is presented in this paper. The root mean square error values show that there is only a small difference between the FE and ANN results.Originality/valueThe ANN function established in this study can be used to predict the mechanical behaviours of breasts and has a fundamental impact on the computer-aided design of functional garments in general.


2016 ◽  
Vol 22 ◽  
pp. 133-156 ◽  
Author(s):  
Charlotte A. Brassey

AbstractBody mass is a key parameter for understanding the physiology, biomechanics, and ecology of an organism. Within paleontology, body mass is a fundamental prerequisite for many studies considering body-size evolution, survivorship patterns, and the occurrence of dwarfism and gigantism. The conventional method for estimating fossil body mass relies on allometric scaling relationships derived from skeletal metrics of extant taxa, but the recent application of three-dimensional imaging techniques to paleontology (e.g., surface laser scanning, computed tomography, and photogrammetry) has allowed for the rapid digitization of fossil specimens. Volumetric body-mass estimation methods based on whole articulated skeletons are therefore becoming increasingly popular. Volume-based approaches offer several advantages, including the ability to reconstruct body-mass distribution around the body, and their relative insensitivity to particularly robust or gracile elements, i.e., the so-called ‘one bone effect.’ Yet their application to the fossil record will always be limited by the paucity of well-preserved specimens. Furthermore, uncertainties with regards to skeletal articulation, body density, and soft-tissue distribution must be acknowledged and their effects quantified. Future work should focus on extant taxa to improve our understanding of body composition and increase confidence in volumetric model input parameters.


2016 ◽  
Vol 22 (4) ◽  
pp. 636-644 ◽  
Author(s):  
Yaususi Kanada

Purpose A methodology for designing and printing three-dimensional (3D) objects with specified printing-direction using fused deposition modeling (FDM), which was proposed by a previous paper, enables the expression of natural directions, such as hair, fabric or other directed textures, in modeled objects. This paper aims to enhance this methodology for creating various shapes of generative visual objects with several specialized attributes. Design/methodology/approach The proposed enhancement consists of two new methods and a new technique. The first is a method for “deformation”. It enables deforming simple 3D models to create varieties of shapes much more easily in generative design processes. The second is the spiral/helical printing method. The print direction (filament direction) of each part of a printed object is made consistent by this method, and it also enables seamless printing results and enables low-angle overhang. The third, i.e. the light-reflection control technique, controls the properties of filament while printing with transparent polylactic acid. It enables the printed objects to reflect light brilliantly. Findings The proposed methods and technique were implemented in a Python library and evaluated by printing various shapes, and it is confirmed that they work well, and objects with attractive attributes, such as the brilliance, can be created. Research limitations/implications The methods and technique proposed in this paper are not well-suited to industrial prototyping or manufacturing that require strength or intensity. Practical implications The techniques proposed in this paper are suited for generatively producing various a small number of products with artistic or visual properties. Originality/value This paper proposes a completely different methodology for 3D printing than the conventional computer-aided design (CAD)-based methodology and enables products that cannot be created by conventional methods.


2019 ◽  
Vol 25 (7) ◽  
pp. 1155-1168
Author(s):  
Mehdi Kazemi ◽  
Abdolreza Rahimi

PurposeAdditive manufacturing technology significantly simplifies the production of complex three-dimensional (3 D) parts directly from the computer-aided design (CAD) model. Although additive manufacturing (AM) processes have unexampled flexibility, they still have restrictions inhibiting engineers to easily generate some specific geometric shapes, easily. Some of these problems pertain to the consumption of materials as supports, the inferior surface finish of some surfaces with certain angles, etc. One of the approaches to overcome these problems is designing by segmentation.Design/methodology/approachThe proposed methodology consists of two steps: (1) segmentation of the 3 D model and (2) exploring the best orientation for each segment. In the first step, engineers consider the possible number of segments and the connection method of segments. In this paper, a series of segments, called a segmentation pattern (SP), is obtained by the recognition of features and separating them automatically (or manually when needed) with one or more appropriate planes. In the second step, the best fabrication orientation should be chosen. The criteria for choosing the best SP and OPs are minimizing the support volume, building time (directly affected by segments’ height in layer-wise AM processes) and surface roughness. Both steps are performed automatically (or manually when needed) by the algorithm created based on principles of particle swarm optimization (PSO) algorithm using Visual C#.FindingsExperimental tests show that the segmentation design improves AM processes from the aspects of building time, material consumption and the surface quality. Segmentation design empowers users of AM technologies to reduce consumption of material by decreasing the support structures, to decrease the time of building by lowering the segments height and to decrease the surface roughness.Originality/valueThis paper presents an original approach in efficiency improvement of AM technologies, thus bringing the AM one step closer to maturity.


Sign in / Sign up

Export Citation Format

Share Document