scholarly journals Accuracy of chair-side fused-deposition modelling for dental applications

2019 ◽  
Vol 25 (5) ◽  
pp. 857-863
Author(s):  
Fusong Yuan ◽  
Yao Sun ◽  
Lei Zhang ◽  
Yuchun Sun

Purpose The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy. Design/methodology/approach Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated. Findings The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively. Originality/value The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2013 ◽  
Vol 581 ◽  
pp. 292-297 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin ◽  
Miroslav Janak

Rapid Prototyping (RP) can be defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional computer aided design (CAD) data. What is commonly considered to be the first RP technique, Stereolithography, was developed by 3D Systems of Valencia, CA, USA. In this contribution are presented basic characteristics and problems in area of technology of Rapid Prototyping with use of Fused Deposition Modelling. It belongs to methods of precision model creation based on geometry obtained from CAD environment. Chapters are focused on optimization of FDM technology preparation process with aim of maximal precision of the parts. There also is algorithm that leads to selection of suitable settings for these problems. There are outputs in form of graph and tables accumulating information directly affecting precision aspects of manufacturing.


Additive Manufacturing termed by ASTM standard referred to in short as, the technology of fabricating a model based on creating a three-dimensional Computer-Aided Design structure. In the context of developing a product from digital data directly, widely involved various technologies. Amongst them, one being Fused Deposition Modelling (FDM) which supervises the principle of AM, is widely known for developing a polymer-constructed sturdiest range of materials or parts are having operative mechanical properties. Even though, the main problem exaggerates that, the quality of the output still denies due to which void parts are created from bubbles trapped leading to failure of parts under mechanical stresses. Since with 15% infill, stronger parts are estimated and their mechanical properties are studied. Since the work signifies the influence of 15% infill on mechanical properties in estimating stronger products by layered addition process. The experimental methodology is based on structural infill parameters determining goal in achieving and studying material mechanical properties.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


2016 ◽  
Vol 4 ◽  
pp. 803-806 ◽  
Author(s):  
Mert Gürgen ◽  
Cenk Eryılmaz ◽  
Vasfi Emre Ömürlü

This article describes a sophisticated determination and presentation of a workspace volume for a delta robot, with consideration of its kinematic behavior. With the help of theoretical equations, optimization is performed with the aid of the stiffness and dexterity analysis. Theoretical substructure is coded in Matlab and three-dimensional (3D) data for delta robot are developed in computer-aided design (CAD) environment. In later stages of the project, both 3D and theoretical data are linked together and thus, with the changing design parameter of the robot itself, the Solidworks CAD output adapts and regenerates output with a new set of parameters. To achieve an optimum workspace volume with predefined parameters, a different set of robot parameters are iterated through design optimization in Matlab, and the delta robot design is finalized and illustrated in the 3D CAD environment, Solidworks. This study provides a technical solution to accomplish a generic delta robot with optimized workspace volume.


2020 ◽  
Vol 32 (5) ◽  
pp. 691-705
Author(s):  
Nazanin Ansari ◽  
Sybille Krzywinski

PurposeThis paper aims to introduce a process chain spanning from scanned data to computer-aided engineering and further required simulations up to the subsequent production. This approach has the potential to reduce production costs and accelerate the procedure.Design/methodology/approachA parametric computer-aided design (CAD) model of the flyer wearing a wingsuit is created enabling easy changes in its posture and the wingsuit geometry. The objective is to track the influence of geometry changes in a timely manner for following simulation scenarios.FindingsAt the final stage, the two-dimensional (2D) pattern cuts were derived from the developed three-dimensional (3D) wingsuit, and the results were compared with the conventional ones used in the first stages of the wingsuit development.Originality/valueProposing a virtual development process chain is challenging; apart from the fact that the CAD construction of a wingsuit flyer – in itself posing a complicated task – is required at a very early stage of the procedure.


2021 ◽  
Vol 5 (2) ◽  
pp. 53
Author(s):  
Romario A Wicaksono ◽  
Eddy Kurniawan ◽  
M Khalid Syafrianto ◽  
Ramadhani Fadelandro Suratman ◽  
M Ridho Sofyandi

<p><em>The process of designing and manufacturing a Cartesian 3D printer model based on Fused Deposition Modelling (FDM) is carried out to produce a 3D printer machine that can perform the printing process accurately and quickly. In this research, the process is divided into three stages, namely designing using Computer-Aided Design (CAD) software, printing and assembling components of a 3D printer machine, and analysing the mechanical structure of a 3D printer machine. This 3D printer is designed to carry out the printing process with an area of 180x180x150 mm. Some components of 3D printing machines use Polylactic Acid (PLA). The simulation results based on the Finite Element Method show that the 3D printer engine is feasible to produce printing with a mass of 40% of the maximum possible load.</em></p>


2020 ◽  
Vol 26 (7) ◽  
pp. 1227-1235 ◽  
Author(s):  
Taehun Kim ◽  
Guk Bae Kim ◽  
Hyun Kyung Song ◽  
Yoon Soo Kyung ◽  
Choung-Soo Kim ◽  
...  

Purpose This study aims to systemically evaluate morphological printing errors between computer-aided design (CAD) and reference models fabricated using two different three-dimensional printing (3DP) technologies with hard and soft materials. Design/methodology/approach The reference models were designed to ensure simpler and more accurate measurements than those obtained from actual kidney simulators. Three reference models, i.e. cube, dumbbell and simplified kidney, were manufactured using photopolymer jetting (PolyJet) with soft and hard materials and multi-jet printing (MJP) with hard materials. Each reference model was repeatably measured five times using digital calipers for each length. These values were compared with those obtained using CAD. Findings The results demonstrate that the cube models with the hard material of MJP and hard and soft materials of PolyJet were smaller (p = 0.022, 0.015 and 0.057, respectively). The dumbbell model with the hard material of MJP was smaller (p = 0.029) and that with the soft material of PolyJet was larger (p = 0.020). However, the dumbbell with the hard material of PolyJet generated low errors (p = 0.065). Finally, the simplified kidney models with the hard material of MJP and soft materials of PolyJet were smaller (p = 0.093 and 0.021) and that with the hard material of PolyJet was opposite to the former models (p = 0.043). Originality/value This study, to the best of authors’ knowledge, is the first to determine the accuracy between CAD and reference models fabricated using two different 3DP technologies with multi-materials. Thus, it serves references for surgical applications as simulators and guides that require accuracy.


2021 ◽  
Vol 27 (2) ◽  
pp. 429-451
Author(s):  
Chrysoula Pandelidi ◽  
Tobias Maconachie ◽  
Stuart Bateman ◽  
Ingomar Kelbassa ◽  
Sebastian Piegert ◽  
...  

Purpose Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade. Design/methodology/approach In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography. Findings A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample. Originality/value This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 515 ◽  
Author(s):  
Essyrose Mathew ◽  
Juan Domínguez-Robles ◽  
Eneko Larrañeta ◽  
Dimitrios A. Lamprou

The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to the manufacturing of catheters. The current process requires moulding, which is time consuming, and coated catheters used currently increase the risk of bacterial resistance, toxicity, and added expense. Three-dimensional (3D) printing has gained a lot of attention in recent years and offers the opportunity to rapidly manufacture catheters, matched to patients through imaging and at a lower cost. Fused deposition modelling (FDM) in particular allows thermoplastic polymers to be printed into the desired devices from a model made using computer aided design (CAD). Limitations to FDM include the small range of thermoplastic polymers that are compatible with this form of printing and the high degradation temperature required for drugs to be extruded with the polymer. Hot-melt extrusion (HME) allows the potential for antimicrobial drugs to be added to the polymer to create catheters with antimicrobial activity, therefore being able to overcome the issue of increased rates of infection. This review will cover the area of dialysis and catheter-related infections, current manufacturing processes of catheters and methods to prevent infection, limitations of current processes of catheter manufacture, future directions into the manufacture of catheters, and how drugs can be incorporated into the polymers to help prevent infection.


Sign in / Sign up

Export Citation Format

Share Document