Optimization of surface quality and machining time in micro-milling of glass

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Dinc ◽  
Ali Mamedov

Purpose Glass is a brittle material produced from silica, which has fine material properties, Owing to its sophisticated material properties, glass has found wide application in various high-technological fields such as aviation, aerospace, communication, optics, biomedical and electronics. However, glass is known as difficult to machine material because of its tendency to brittle fracture during machining. This paper aims to investigate the effects of cutting parameters on surface quality and machining time during micro-milling of brittle glass components. Design/methodology/approach A comprehensive genetic algorithm-based optimization strategy is used for selection of process parameters such as cutting speed, feed rate and depth of cut. Effectiveness of the proposed strategy is validated by conducting micro-milling cutting experiments on soda-lime glass material. Findings Results showed that the generated surface quality drastically decrease with increase in the amount of removed material. Lower depth of cut and feed rate result in less amount of cracks formed on machined surface. Also, it is observed that the increase in cutting speed results in better surface quality. Having desired surface quality in shorter machining time directly reduces energy consumed during manufacturing, which is reducing environmental impact of glass parts. Originality/value The novelty of this research work lies in simultaneously considering the effects of cutting speed, feed rate, depth of cut on surface quality and machining time for micro-milling operation of brittle glass material. The model is able to find optimum process parameters for high surface quality and minimum machining time.

2014 ◽  
Vol 551 ◽  
pp. 569-573 ◽  
Author(s):  
Shu Feng Sun ◽  
An Chen Yin ◽  
Ping Ping Wang ◽  
Qin Dong Zhang

With the development of the times, micro and small products are needed increasingly. The machining accuracy and surface quality are especially important to micro machining. However, in the micro milling, the size of the burr compared with that of the part is much greater than that of conventional milling. Moreover, it is difficult to remove micro milling burr by conventional deburring methods due to the small part size. The existence of burr will not only affect the match of parts, but also reduce the dimensional accuracy and surface quality of the work piece. Therefore, it is important to control and reduce micro-milling burr. Micro-milling experiments are carried out on the material of copper with micro-milling cutter diameter 0.5 mm. Micro grooves are milled with different cutting process parameters. The burrs generated under different conditions are analyzed using orthogonal test method. When the spindle speed and feed rate are constant, burrs increase with the increasing of cutting depth. Keeping the spindle speed and the depth of cut constant, burrs are generated increasingly with the increase of feed rate. And the decreasing of the spindle speed leads to the increase of burrs if the other parameters are constant. The experimental research provides reference for the burr control of micro-milling based on the optimization cutting process parameters.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850139 ◽  
Author(s):  
A. PALANISAMY ◽  
T. SELVARAJ

In this work, an attempt has been made to optimize the process parameters on turning operation of INCOLOY 800H, with the aid of cryogenically treated (24[Formula: see text]h, 12[Formula: see text]h and untreated) multi-layer chemical vapor deposition (CVD) coated tools. The influencing factors like cutting speed, feed rate, depth of cut and cryogenic treatment were selected as input parameters. Surface roughness, microhardness and material removal rate (MRR) were considered as output responses. The experimentation was planned and conducted based on Taguchi L27 standard orthogonal array (OA) with three levels and four factors. Multi-criteria decision making (MCDM) methods like grey relational analysis (GRA) and technique for order preference by similarity to ideal solution (TOPSIS) have been used to optimize the turning parameters in this work. Similar results were obtained from these MCDM techniques. Analysis of variance (ANOVA) was employed to identify the significance of the process parameters on the responses. Experimental research proved that machining performance could be improved efficiently at cutting speed is 55[Formula: see text]m/min, feed rate is 0.06[Formula: see text]mm/rev, depth of cut is 1[Formula: see text]mm and 24[Formula: see text]h cryogenically treated tool. Tool wear was analyzed for the cutting tool machined at the optimum cutting condition with the help of scanning electron microscope (SEM) and energy dispersion spectroscopy (EDS). Dry sliding wear test was also conducted for the optimal condition. The percentage improvement in machining performances is 12.70%.


2021 ◽  
Author(s):  
Chitransh Singh ◽  
Arnab Das ◽  
Vivek Bajpai ◽  
Madan Lal Chandravanshi

Abstract High-speed micro-milling is an emerging technology used to produce micro and miniaturized products with smooth surface finish and high dimensional precision. However, tool vibration is a major problem in micro-milling as it directly affects the product accuracy, surface quality and tool life. Inappropriate selection of process parameters increases radial and axial thrust as well as force transmitted to structure during micro-machining which results in rapid tool vibration. This work focuses on the experimental investigation of process parameters (cutting speed and depth of cut) in order to reduce tool vibration due to axial and radial thrust in high-speed micro-milling. The tool used in this experiment is a 2-flute end mill cutter (1 mm cutter diameter) and workpiece is a commercially pure titanium (CpTi) plate. The operation was performed at different depth of cut and varying cutting speeds keeping the chip load constant. Vibration signals were acquired and processed to obtain the vibration thrust of the tool and the force transmitted to the structure. The results indicated that as the depth of cut and cutting speed increases, both axial as well as radial thrust decreases leading to lower vibration amplitude of the cutting tool and reduction in force transmitted to the machine structure.


Author(s):  
Chetan Darshan ◽  
Lakhvir Singh ◽  
APS Sethi

Manufacturers around the globe persistently looking for the cheapest and quality manufactured machined components to compete in the market. Good surface quality is desired for the proper functioning of the produced parts. The surface quality is influenced by cutting speed, feed rate and depth of cut and many other parameters. In the present study attempt has been made to evaluate the performance of ceramic inserts during hard turning of EN-31 steel. The analysis of variance is applied to study the effect of cutting speed, feed rate and depth of cut on Flank wear and surface roughness. Model is found to be statically significant using regression model, while feed and depth of cut are the factor affecting Flank wear and feed is dominating factors for surface roughness. The analysis of variance was used to analyze the input parameters and there interactions during machining. The developed model predicted response factor at 95% confidence level.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2036 ◽  
Author(s):  
Adel T. Abbas ◽  
Magdy M. El Rayes ◽  
Monis Luqman ◽  
Noha Naeim ◽  
Hussien Hegab ◽  
...  

This article reports an experimental assessment of surface quality generated in the precision turning of AISI 4340 steel alloy using conventional round and wiper nose inserts for different cutting conditions. A three-factor (each at 4 levels) full factorial design of experiment was followed for feed rate, cutting speed, and depth of cut, with resulting machined surface quality characterized by resulting average roughness (Ra). The results show that, for the provided range of cutting conditions, lower surface roughness values were obtained using wiper inserts compared with conventional inserts, indicating a superior performance. When including the type of insert as a qualitative factor, ANOVA revealed that the type of insert was most important in determining surface roughness and material removal rate, with feed rate as the second most significant, followed by the interaction of feed rate and type of insert. It was found that using wiper inserts allowed simultaneous increases in feed rate, cutting speed, and depth of cut, while providing better surface quality of lower Ra, compared to the global minimum value that could be achieved using the conventional insert. These findings show that wiper inserts produce better surface quality and a material removal rate up to ten times higher than that obtained with conventional inserts. This clearly indicates the tremendous advantages of high surface quality and productivity that wiper inserts can offer when compared with the conventional round nose type in precision hard turning of AISI 4340 alloy steel.


2014 ◽  
Vol 592-594 ◽  
pp. 668-672
Author(s):  
Praveen Kumar ◽  
Hari Singh

The objective of the paper is to obtain an optimal setting of turning process parameters (cutting speed, depth of cut and feed rate) resulting in an optimal value of the feed force when machining En19 steel with tungsten carbide cutting tool inserts. The effects of the selected turning process parameters on feed force and the subsequent optimal settings of the parameters have been accomplished using Taguchi’s parameter design approach. It was indicated by the results that the selected turning process parameters significantly affect the selected machining characteristic. The percent contributions of parameters as quantified in the S/N ANOVA envisage that the relative power of cutting speed (72.09 %) in controlling variation and mean feed force is significantly higher than that of the depth of cut (22.30 %) and feed rate (05.31 %). The predicted optimum feed force is 98.067 N. The results have been validated by the confirmation experiments.


2012 ◽  
Vol 445 ◽  
pp. 62-67 ◽  
Author(s):  
J.B. Saedon ◽  
S.L. Soo ◽  
D.K. Aspinwall ◽  
A. Barnacle

The paper presents an experimental investigation into the slotting of hardened AISI D2 (~62HRC) tool steel using 0.5mm diameter coated (TiAlN) tungsten carbide (WC) end mills. SEM analysis of tool morphology and coating integrity was undertaken on all tools prior to testing. Tool wear details are given based on resulting cutter diameter and slot width reduction. In addition, cutting forces are also presented together with details of workpiece burr formation. A full factorial experimental design was used with variation of cutting speed, feed rate and depth of cut, with results evaluated using analysis of variance (ANOVA) techniques. Parameter levels were chosen based on microscale milling best practice and results from preliminary testing. Main effects plots and percentage contribution ratios (PCR) are included for the main factors. Cutting speed was shown to have the greatest effect on tool wear (33% PCR). When operating at 50m/min cutting speed with a feed rate of 8µm/rev and a depth of cut of 55µm, cutter diameter showed a reduction of up to 82µm for a 520mm cut length. SEM micrographs of tool wear highlighted chipping / fracture as the primary wear mode with adhered workpiece material causing further attritious wear when machining was continued up to 2.6m cut length. All tests produced burrs on the top edges of the slots which varied in size / width to a lesser or greater degree. Under the most severe operating conditions, burr width varied from approximately 50µm to more than 220µm over the 520mm cut length. Cutting forces in general were less than 12N up to test cessation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
M. Nurhaniza ◽  
M. K. A. M. Ariffin ◽  
F. Mustapha ◽  
B. T. H. T. Baharudin

The quality of the machining is measured from surface finished and it is considered as the most important aspect in composite machining. An appropriate and optimum machining parameters setting is crucial during machining operation in order to enhance the surface quality. The objective of this research is to analyze the effect of machining parameters on the surface quality of CFRP-Aluminium in CNC end milling operation with PCD tool. The milling parameters evaluated are spindle speed, feed rate, and depth of cut. The L9 Taguchi orthogonal arrays, signal-to-noise (S/N) ratio, and analysis of variance (ANOVA) are employed to analyze the effect of these cutting parameters. The analysis of the results indicates that the optimal cutting parameters combination for good surface finish is high cutting speed, low feed rate, and low depth of cut.


2015 ◽  
Vol 787 ◽  
pp. 643-647
Author(s):  
M. Vignesh ◽  
K. Venkatesan ◽  
R. Ramanujam ◽  
Sundaravel Vijayan

Metal matrix composites (MMC) are the combination of base metal matrix and reinforcing materials like SiC, Al2O3, etc. The present research is focused on the machinability studies of Al 6061 reinforced with 10% wtof Al2O3 particles using multi layered coated carbide inserts. Fabricated samples by stir casting route were turned by the most variable factors, cutting speed, depth of cutand by a constant feed rate of 0.206 mm/rev. Surface roughness and tool wear are considered asoutput. Experiments are conducted by varying the cutting speed while keeping feed rate and depth of cut as constant. After the optimum cutting speed was determined, the depth of cut is varied by keeping the cutting speedand feed rateas constant.Based on the optimum cutting speed (150 m/min), depth of cut (1.2 mm) and feed rate (0.206 mm/rev), a long run test was carried out to find out the tool life and surface finish. But due to the softness nature built up edge formation is obtained. At the optimal parametric combination, the built up edge obtained is less than 2 mm for a machining time of 425 s


Sign in / Sign up

Export Citation Format

Share Document