An experimental study on characterizing damage and fracture of a rock-like material based on three-dimensional magnetic field imaging

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wenping Yue ◽  
Mingyang Yang

Purpose The results showed that the use of a magnetic marker could relatively accurately reflect the fracture pattern inside the rock-like material (RLM). Design/methodology/approach This study investigated the internal structure and fracture pattern of a fractured RLM. Magnetized iron oxide powder, which was used as a magnetic marker, was mixed with water and glue to form a magnetic slurry, which was subsequently injected into a fractured RLM. After the magnetic slurry completely filled the cracks inside the RLM and became cemented, the distribution and magnitude of the magnetic field inside the RLM were determined using a three-dimensional (3D) magnetic field imaging system. Findings A model for determining the magnetic field strength was developed using MATLAB. Originality/value This model of 3D magnetic will further be used as a finite element tool to simulate and image cracks inside the rock.

Author(s):  
L. A. Knauss ◽  
B. M. Frazier ◽  
A. B. Cawthorne ◽  
E. Budiarto ◽  
R. Crandall ◽  
...  

Abstract With the arrival of flip-chip packaging, present tools and techniques are having increasing difficulty meeting failure-analysis needs. Recently a magneticfield imaging system has been used to localize shorts in buried layers of both packages and dies. Until now, these shorts have been powered directly through simple connections at the package. Power shorts are examples of direct shorts that can be powered through connections to Vdd and Vss at the package level. While power shorts are common types of failure, equally important are defects such as logic shorts, which cannot be powered through simple package connections. These defects must be indirectly activated by driving the part through a set of vectors. This makes the magnetic-field imaging process more complicated due to the large background currents present along with the defect current. Magnetic-field imaging is made possible through the use of a SQUID (Superconducting Quantum Interference Device), which is a very sensitive magnetic sensor that can image magnetic fields generated by magnetic materials or currents (such as those in an integrated circuit). The current-density distribution in the sample can then be calculated from the magnetic-field image revealing the locations of shorts and other current anomalies. Presented here is the application of a SQUID-based magnetic-field imaging system for isolation of indirect shorts. This system has been used to investigate shorts in two flip-chip-packaged SRAMs. Defect currents as small as 38 μA were imaged in a background of 1 A. The measurements were made using a lock-in thechnique and image subtraction. The magnetic-field image from one sample is compared with the results from a corresponding infrared-microscope image.


Author(s):  
K. Sanchez ◽  
G. Bascoul ◽  
F. Infante ◽  
N. Courjault ◽  
T. Nakamura

Abstract Magnetic field imaging is a well-known technique which gives the possibility to study the internal activity of electronic components in a contactless and non-invasive way. Additional data processing can convert the magnetic field image into a current path and give the possibility to identify current flow anomalies in electronic devices. This technique can be applied at board level or device level and is particularly suitable for the failure analysis of complex packages (stacked device & 3D packaging). This approach can be combined with thermal imaging, X-ray observation and other failure analysis tool. This paper will present two different techniques which give the possibility to measure the magnetic field in two dimensions over an active device. Same device and same level of current is used for the two techniques to give the possibility to compare the performance.


Author(s):  
Kazuhiro Suzuki ◽  
Masayoshi Tsutsumi ◽  
Masako Saito ◽  
Makoto Toda ◽  
Kouzou Yamamoto ◽  
...  

Abstract It is important to locate a short circuit failure in semiconductor devices, and powerful tools such as lock-in thermography and optical beam induced resistance change are used. However, those tools are inappropriate for investigating the device covered with the impenetrable substance to light, because the covering substance blocks the light from the defect point in the device and also prevents the optical beam from outside of the device. We demonstrate that a subsurface short circuit in a ball grid array device can be located by magnetic field imaging (MFI) and the electromagnetic field reconstruction method (EM-FRM), which makes it possible to calculate a magnetic field in the immediate vicinity of the current that is the source of the field from a measured magnetic field at a distance. Moreover, we visualize the short circuit by three-dimensional X-ray microscopy. MFI is also applied to visualization of a magnetic field created by a current flowing inside a printed circuit board and a light emitting diode package.


Author(s):  
Jacek Horiszny

Purpose The paper presents the analysis of magnetic field that surrounds the power transformer after it has been switched off. The purpose of this paper is to determine the possibility of defining the residual fluxes in the legs of the transformer based on the measurement of this field. It was also intended to determine the type and the location of magnetic sensors. Design/methodology/approach Numerical analysis of the magnetic field was performed. A three-dimensional model of the transformer’s magnetic core was created in the Flux 3D simulation program. The analysis was concerned with an oil-filled transformer and a dry transformer. The magnetic field of Earth was taken into account. Findings The research has shown that magnetic induction of the leakage field produced by residual magnetization of the core is comparable to the magnetic induction of the Earth’s field. It was also found that the measurement of the magnetic induction should be performed as close as possible to the core. The interior of the tank turned out to be a convenient space for the placement of the sensors. Research limitations/implications The influence of external ferromagnetic objects, and devices generating magnetic field, on the measurement was not considered. It should be taken into account in the future work. Originality/value On the basis of the analysis, it was proposed to measure the magnetic induction vector of the leakage field at three points. The sensors should be placed in front of the columns at a position that is half of their height. The measurement can be performed with satisfactory accuracy by sensors located on the surface of the windings.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001937-001965
Author(s):  
Jan Gaudestad ◽  
Antonio Orozco

The challenges that 3D integration present to Failure Analysis require the development of new Fault Isolation techniques that allows for non-destructive, true 3D failure localization. By injecting a current in the device under test (DUT), the current generates a magnetic field around it and this magnetic field is detected by a sensor above the device. Magnetic field imaging (MFI) is a natural candidate for 3D Fault Isolation of complex 3D interconnected devices. This is because the magnetic field generated by the currents in the DUT passes unaffected through all materials used in device fabrication; the presence of multiple metal layers, dies or other opaque layers do not have any impact on the magnetic field signal. The limitations of the technique are not affected by the number of layers in the stacked devise in samples such as wirebonded stacked memory, Through Silicon Via (TSV) stacked die or even package on package (PoP). The sample is raster scanned and magnetic field is acquired at determined steps providing a magnetic image of the field distribution. This magnetic field data is typically processed using a standard inversion technique to obtain a current density map of the device. The resulting current map can then be compared to a circuit diagram, an optical or infrared image, or a non-failing part to determine the fault location. Today, giant-magnetoresistive (GMR) sensors have been added to the Superconducting Quantum Interference Device (SQUID) sensor to allow higher resolution and Fault Isolation (FI) I at die level. Magnetic Field Imaging (MFI), using SQUID as the high sensitive magnetic sensor in combination with a high resolution GMR sensor. A solver algorithm capable of successfully reconstructing a 3D current path based on an acquired magnetic field image from both sensors has been developed. The generic 3D inverse problem has no unique solution. Given a particular 3D magnetic field distribution, there are an infinite number of current path distributions that will result in such magnetic field. This ill-posed problem has restricted, so far, the use of magnetic imaging to 2D. A different kind of 3D solver can be constructed, nevertheless capable of obtaining a single solution. The 3D solver algorithm is not only capable of extracting the 3D current path, but it also provides valuable geometrical information about the device. Accurately being able to position each current segment in a layer allows the FA engineer to follow the current as it vertically moves from one die (or layer) to another. [1,2,3]


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mojtaba Sepehrnia ◽  
Hossein Khorasanizadeh ◽  
Mohammad Behshad Shafii

Purpose This paper aims to study the thermal and thermo-hydraulic performances of ferro-nanofluid flow in a three-dimensional trapezoidal microchannel heat sink (TMCHS) under uniform heat flux and magnetic fields. Design/methodology/approach To investigate the effect of direction of Lorentz force the magnetic field has been applied: transversely in the x direction (Case I);transversely in the y direction (Case II); and parallel in the z direction (Case III). The three-dimensional governing equations with the associated boundary conditions for ferro-nanofluid flow and heat transfer have been solved by using an element-based finite volume method. The coupled algorithm has been used to solve the velocity and pressure fields. The convergence is reached when the accuracy of solutions attains 10–6 for the continuity and momentum equations and 10–9 for the energy equation. Findings According to thermal indicators the Case III has the best performance, but according to performance evaluation criterion (PEC) the Case II is the best. The simulation results show by increasing the Hartmann number from 0 to 12, there is an increase for PEC between 845.01% and 2997.39%, for thermal resistance between 155.91% and 262.35% and ratio of the maximum electronic chip temperature difference to heat flux between 155.16% and 289.59%. Also, the best thermo-hydraulic performance occurs at Hartmann number of 12, pressure drop of 10 kPa and volume fraction of 2%. Research limitations/implications The embedded electronic chip on the base plate generates heat flux of 60 kW/m2. Simulations have been performed for ferro-nanofluid with volume fractions of 1%, 2% and 3%, pressure drops of 10, 20 and 30 kPa and Hartmann numbers of 0, 3, 6, 9 and 12. Practical implications The authors obtained interesting results, which can be used as a design tool for magnetohydrodynamics micro pumps, microelectronic devices, micro heat exchanger and micro scale cooling systems. Originality/value Review of the literature indicated that there has been no study on the effects of magnetic field on thermal and thermo-hydraulic performances of ferro-nanofluid flow in a TMCHS, so far. In this three dimensional study, flow of ferro-nanofluid through a trapezoidal heat sink with five trapezoidal microchannels has been considered. In all of previous studies, in which the effect of magnetic field has been investigated, the magnetic field has been applied only in one direction. So as another innovation of the present research, the effect of applying magnetic field direction (transverse and parallel) on thermo-hydraulic behavior of TMCHS is investigated.


2018 ◽  
Author(s):  
Antonio Orozco ◽  
Elena Talanova ◽  
Alex Jeffers ◽  
Florencia Rusli ◽  
Bernice Zee ◽  
...  

Abstract Industry and market requirements keep imposing demands in terms of tighter transistor packing, die and component real estate management on the package, faster connections and expanding functionality. This has forced the semiconductor industry to look for novel packaging approaches to allow for 3D stacking of transistors (the so called “More than Moore”). This complex 3D geometry, with an abundance of opaque layers and interconnects, presents a great challenge for failure analysis (FA). Three-dimensional (3D) magnetic field imaging (MFI) has proven to be a natural, useful technique for non-destructively mapping 3D current paths in devices that allows for submicron vertical resolution. 3D X-ray microscopy (XRM) enables 3D tomographic imaging of advanced IC packages without the need to destroy the device. This is because it employs both geometric and optical image magnifications to achieve high spatial resolution. In this paper, we propose a fully nondestructive, 3D-capable workflow for FA comprising 3D MFI and 3D XRM. We present an application of this novel workflow to 3D defect localization in a complex 2.5D device combining high bandwidth memory (HBM) devices and an application specific integrated circuit (ASIC) unit on a Si interposer with a signal pin electrical short failure.


2021 ◽  
Vol 11 (17) ◽  
pp. 8148
Author(s):  
Yuan Chen ◽  
Ping Lai ◽  
Hong-Zhong Huang ◽  
Peng Zhang ◽  
Xiaoling Lin

With the development of 3D integrated packaging technology, failure analysis is facing more and more challenges. Defect localization in a 3D package is a key step of failure analysis. The complex structure and materials of 3D package devices demand non-destructive defect localization technology for full packages. Magnetic field imaging and three-dimensional X-ray technology are not affected by package material or form. They are effective methods to realize defect localization on 3D packages. In this paper, magnetic field imaging and high-resolution three-dimensional X-ray microscopy were used to localize the open defect in a 3D package with a TSV daisy chain. A two-probe RF method in magnetic field imaging was performed to resolve isolation of the defect difficulties resulting from many different branches of TSV daisy chains. Additionally, a linear decay method was used to target sub-micron resolution at a long working distance. Multiple partition scans from a high-resolution 3D X-ray microscopy with a two-stage magnification structure were used to achieve sub-micron resolution. The open location identified by magnetic field imaging was consistent with that identified by a three-dimensional X-ray microscope. The opening was located on the top metal in the proximity of the fifth via. Physical failure analysis revealed the presence of a crack in the top metal at the opening location.


2021 ◽  
Vol 60 (5) ◽  
pp. 056502
Author(s):  
Shogo Suzuki ◽  
Hideaki Okada ◽  
Kai Yabumoto ◽  
Seiju Matsuda ◽  
Yuki Mima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document