A novel message authentication method for VANET without RSU

2016 ◽  
Vol 33 (8) ◽  
pp. 2288-2301 ◽  
Author(s):  
Alan Dahgwo Yein ◽  
Chih-Hsueh Lin ◽  
Yu-Hsiu Huang ◽  
Wen-Shyong Hsieh ◽  
Chung-Nan Lee ◽  
...  

Purpose Riding on the wave of intelligent transportation systems, the vehicular ad hoc network (VANET) is becoming a popular research topic. VANET is designed to build an environment where the vehicles can exchange information about the traffic conditions or vehicle situation to help the vehicles avoid traffic accidents or traffic jams. In order to keep the privacy of vehicles, the vehicles must be anonymous and the routing must be untraceable while still being able to be verified as legal entities. The paper aims to discuss these issues. Design/methodology/approach The exchanged messages must be authenticated to be genuine and verified that they were sent by a legal vehicle. The vehicles also can mutually trust and communicate confidentially. In VANETs, road-side units (RSUs) are installed to help the vehicles to obtain message authentication or communicate confidentially. However, the coverage of RSUs is limited due to the high cost of wide area installation. Therefore the vehicles must be able to obtain message authentication by themselves – without an RSU. Findings The authors take the concept of random key pre-distribution used in wireless sensor networks, modify it into a random secret pre-distribution, and integrate it with identity-based cryptography to make anonymous message authentication and private communication easier and safer. The authors construct a two-tier structure. The tier 1, trust authority, assigns n anonymous identities and embeds n secrets into these identities to be the private secret keys for the tier 2, registered vehicles. At any time, the vehicles can randomly choose one of n anonymous identities to obtain message authentication or communicate confidentially with other vehicles. Originality/value The processes of building neighbor set, setting pairing value, and message authenticating are proposed in this paper. The proposed method can protect against the attacks of compromising, masquerading, forging, and replying, and can also achieve the security requirements of VANET in message authentication, confidential communication, anonymity, and un-traceability. The performance of the proposed method is superior to the related works.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ahmer Khan Jadoon ◽  
Licheng Wang ◽  
Tong Li ◽  
Muhammad Azam Zia

A new integration of wireless communication technologies into the automobile industry has instigated a momentous research interest in the field of Vehicular Ad Hoc Network (VANET) security. Intelligent Transportation Systems (ITS) are set up, aiming to offer promising applications for efficient and safe communication for future automotive technology. Vehicular networks are unique in terms of characteristics, challenges, architecture, and applications. Consequently, security requirements related to vehicular networks are more complex as compared to mobile networks and conventional wireless networks. This article presents a survey about developments in vehicular networks from the perspective of lightweight cryptographic protocols and privacy preserving algorithms. Unique characteristics of vehicular networks are presented which make the embedded security applications computationally hard as well as memory constrained. The current study also deals with the fundamental security requirements, essential for vehicular communication. Furthermore, awareness of security threats and their cryptographic solutions in terms of future automotive industry are discussed. In addition, asymmetric, symmetric, and lightweight cryptographic solutions are summarized. These strategies can be enhanced or incorporated all in all to meet the security perquisites of future cars security.


VANET is becoming an emergent technology in Intelligent Transportation Systems. Their main purpose is to provide road safety and improve driving experience for both drivers and passengers. Other unique features of VANET include dynamic topology, short connection period, high mobility of nodes, etc However, security and privacy becomes major issues when communicating in such open wireless environment. In this paper, along with VANET characteristics, we presented security requirements and challenges that need to be kept in mind while designing a security protocol. We defined all existing security attacks and privacy issues in VANET. We categorized these security attacks into different classes based on their properties and provided the comprehensive analysis on them.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4040 ◽  
Author(s):  
Farhan Ahmad ◽  
Asma Adnane ◽  
Virginia Franqueira ◽  
Fatih Kurugollu ◽  
Lu Liu

Vehicular Ad-Hoc Network (VANET), a vital component of Intelligent Transportation Systems (ITS) technology, relies on communication between dynamically connected vehicles and static Road Side Units (RSU) to offer various applications (e.g., collision avoidance alerts, steep-curve warnings and infotainment). VANET has a massive potential to improve traffic efficiency, and road safety by exchanging critical information between nodes (vehicles and RSU), thus reducing the likelihood of traffic accidents. However, this communication between nodes is subject to a variety of attacks, such as Man-In-The-Middle (MITM) attacks which represent a major risk in VANET. It happens when a malicious node intercepts or tampers with messages exchanged between legitimate nodes. In this paper, we studied the impact on network performance of different strategies which attackers can adopt to launch MITM attacks in VANET, such as fleet or random strategies. In particular, we focus on three goals of MITM attacks—message delayed, message dropped and message tampered. The simulation results indicate that these attacks have a severe influence on the legitimate nodes in VANET as the network experience high number of compromised messages, high end-to-end delays and preeminent packet losses.


2020 ◽  
Vol 39 (6) ◽  
pp. 8357-8364
Author(s):  
Thompson Stephan ◽  
Ananthnarayan Rajappa ◽  
K.S. Sendhil Kumar ◽  
Shivang Gupta ◽  
Achyut Shankar ◽  
...  

Vehicular Ad Hoc Networks (VANETs) is the most growing research area in wireless communication and has been gaining significant attention over recent years due to its role in designing intelligent transportation systems. Wireless multi-hop forwarding in VANETs is challenging since the data has to be relayed as soon as possible through the intermediate vehicles from the source to destination. This paper proposes a modified fuzzy-based greedy routing protocol (MFGR) which is an enhanced version of fuzzy logic-based greedy routing protocol (FLGR). Our proposed protocol applies fuzzy logic for the selection of the next greedy forwarder to forward the data reliably towards the destination. Five parameters, namely distance, direction, speed, position, and trust have been used to evaluate the node’s stability using fuzzy logic. The simulation results demonstrate that the proposed MFGR scheme can achieve the best performance in terms of the highest packet delivery ratio (PDR) and minimizes the average number of hops among all protocols.


Author(s):  
Muhammad Rusyadi Ramli ◽  
Riesa Krisna Astuti Sakir ◽  
Dong-Seong Kim

This paper presents fog-based intelligent transportation systems (ITS) architecture for traffic light optimization. Specifically, each intersection consists of traffic lights equipped with a fog node. The roadside unit (RSU) node is deployed to monitor the traffic condition and transmit it to the fog node. The traffic light center (TLC) is used to collect the traffic condition from the fog nodes of all intersections. In this work, two traffic light optimization problems are addressed where each problem will be processed either on fog node or TLC according to their requirements. First, the high latency for the vehicle to decide the dilemma zone is addressed. In the dilemma zone, the vehicle may hesitate whether to accelerate or decelerate that can lead to traffic accidents if the decision is not taken quickly. This first problem is processed on the fog node since it requires a real-time process to accomplish. Second, the proposed architecture aims each intersection aware of its adjacent traffic condition. Thus, the TLC is used to estimate the total incoming number of vehicles based on the gathered information from all fog nodes of each intersection. The results show that the proposed fog-based ITS architecture has better performance in terms of network latency compared to the existing solution in which relies only on TLC.


2021 ◽  
Vol 12 (4) ◽  
pp. 1-30
Author(s):  
Zhenchang Xia ◽  
Jia Wu ◽  
Libing Wu ◽  
Yanjiao Chen ◽  
Jian Yang ◽  
...  

Vehicular ad hoc networks ( VANETs ) and the services they support are an essential part of intelligent transportation. Through physical technologies, applications, protocols, and standards, they help to ensure traffic moves efficiently and vehicles operate safely. This article surveys the current state of play in VANETs development. The summarized and classified include the key technologies critical to the field, the resource-management and safety applications needed for smooth operations, the communications and data transmission protocols that support networking, and the theoretical and environmental constructs underpinning research and development, such as graph neural networks and the Internet of Things. Additionally, we identify and discuss several challenges facing VANETs, including poor safety, poor reliability, non-uniform standards, and low intelligence levels. Finally, we touch on hot technologies and techniques, such as reinforcement learning and 5G communications, to provide an outlook for the future of intelligent transportation systems.


Author(s):  
إسراء عصام بن موسى ◽  
عبدالسلام صالح الراشدي

Vehicular Ad-hoc Network (VANET) becomes one of the most popular modern technologies these days, due to its contribution to the development and modernization of Intelligent Transportation Systems (ITS). The primary goal of these networks is to provide safety and comfort for drivers and passengers in roads. There are many types of VANET that are used in ITS, in this paper, we particularly focus on the Vehicle to Vehicle communication (V2V), which each vehicle can exchange information to inform drivers of other vehicles about the current state of the road flow, in the event of any emergency to avoid accidents, and reduce congestion on roads. We proposed V2V using Wi-Fi (wireless fidelity); the reason of its unique characteristics that distinguish it from other types. There are many difficulties and the challenges in implementing most types of V2V, and the reason is due to the lack of devices and equipment needed for real implementation. To prove the possibility of applying this type in real life, we made a prototype contains a modified toy car, a 12-volt power supply, sensors, visual, audible alarm, a visual “LED” devices, and finally a 12-volt DC relay unit. As a conclusion, the proposed implementation in spite of minimal requirements and use simple equipment, we have achieved the most important main objectives of the paper: preventing vehicles from collision, early warning, and avoiding congestion on the roads.


Author(s):  
Chong Han ◽  
Sami Muhaidat ◽  
Ibrahim Abualhaol ◽  
Mehrdad Dianati ◽  
Rahim Tafazolli

Vehicular Ad-Hoc Networks (VANETs) are a critical component of the Intelligent Transportation Systems (ITS), which involve the applications of advanced information processing, communications, sensing, and controlling technologies in an integrated manner to improve the functionality and the safety of transportation systems, providing drivers with timely information on road and traffic conditions, and achieving smooth traffic flow on the roads. Recently, the security of VANETs has attracted major attention for the possible presence of malicious elements, and the presence of altered messages due to channel errors in transmissions. In order to provide reliable and secure communications, Intrusion Detection Systems (IDSs) can serve as a second defense wall after prevention-based approaches, such as encryption. This chapter first presents the state-of-the-art literature on intrusion detection in VANETs. Next, the detection of illicit wireless transmissions from the physical layer perspective is investigated, assuming the presence of regular ongoing legitimate transmissions. Finally, a novel cooperative intrusion detection scheme from the MAC sub-layer perspective is discussed.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 350
Author(s):  
Mohammed Saad Talib ◽  
Aslinda Hassan ◽  
Burairah Hussin ◽  
Ali Abdul-Jabbar Mohammed ◽  
Ali Abdulhussian Hassan ◽  
...  

the numbers of accidents are increasing in an exponential manner with the growing of vehicles numbers on roads in recent years.  This huge number of vehicles increases the traffic congestion rates. Therefore, new technologies are so important to reduce the victims in the roads and improve the traffic safety. The Intelligent Transportation Systems (ITS) represents an emerging technology to improve the road's safety and traffic efficiency. ITS have various safety and not safety applications. Numerous methods are intended to develop the smart transport systems. The crucial form is the Vehicular Ad hoc Networks (VANET). VANET is becoming the most common network in ITS. It confirms human’s safety on streets by dissemination protection messages among vehicles. Optimizing the traffic management operations represent an urgent issue in this era a according to the massive growing in number of circulating vehicles, traffic congestions and road accidents. Street congestions can have significant negative impact on the life quality, passenger's safety, daily activities, economic and environmental for citizens and organizations. Current progresses in communication and computing paradigms fetched the improvement of inclusive intelligent devices equipped with wireless communication capability and high efficiency processors.  


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xiang Ji ◽  
Huiqun Yu ◽  
Guisheng Fan ◽  
Huaiying Sun ◽  
Liqiong Chen

Vehicular ad hoc network (VANET) is an emerging technology for the future intelligent transportation systems (ITSs). The current researches are intensely focusing on the problems of routing protocol reliability and scalability across the urban VANETs. Vehicle clustering is testified to be a promising approach to improve routing reliability and scalability by grouping vehicles together to serve as the foundation for ITS applications. However, some prominent characteristics, like high mobility and uneven spatial distribution of vehicles, may affect the clustering performance. Therefore, how to establish and maintain stable clusters has become a challenging problem in VANETs. This paper proposes a link reliability-based clustering algorithm (LRCA) to provide efficient and reliable data transmission in VANETs. Before clustering, a novel link lifetime-based (LLT-based) neighbor sampling strategy is put forward to filter out the redundant unstable neighbors. The proposed clustering scheme mainly composes of three parts: cluster head selection, cluster formation, and cluster maintenance. Furthermore, we propose a routing protocol of LRCA to serve the infotainment applications in VANET. To make routing decisions appropriate, we nominate special nodes at intersections to evaluate the network condition by assigning weights to the road segments. Routes with the lowest weights are then selected as the optimal data forwarding paths. We evaluate clustering stability and routing performance of the proposed approach by comparing with some existing schemes. The extensive simulation results show that our approach outperforms in both cluster stability and data transmission.


Sign in / Sign up

Export Citation Format

Share Document