Turbulent flows in a spiral double-pipe heat exchanger

Author(s):  
Zhe Tian ◽  
Ali Abdollahi ◽  
Mahmoud Shariati ◽  
Atefeh Amindoust ◽  
Hossein Arasteh ◽  
...  

Purpose This paper aims to study the fluid flow and heat transfer through a spiral double-pipe heat exchanger. Nowadays using spiral double-pipe heat exchangers has become popular in different industrial segments due to its complex and spiral structure, which causes an enhancement in heat transfer. Design/methodology/approach In these heat exchangers, by converting the fluid motion to the secondary motion, the heat transfer coefficient is greater than that of the straight double-pipe heat exchangers and cause increased heat transfer between fluids. Findings The present study, by using the Fluent software and nanofluid heat transfer simulation in a spiral double-tube heat exchanger, investigates the effects of operating parameters including fluid inlet velocity, volume fraction of nanoparticles, type of nanoparticles and fluid inlet temperature on heat transfer efficiency. Originality/value After presenting the results derived from the fluid numerical simulation and finding the optimal performance conditions using a genetic algorithm, it was found that water–Al2O3 and water–SiO2 nanofluids are the best choices for the Reynolds numbers ranging from 10,551 to 17,220 and 17,220 to 31,910, respectively.

Transferring heat from one fluid to another fluid without losing of major energy is a challenging task in the food processing and other industries. Double Pipe Heat Exchanger (DPHE) are light capacity Heat Exchangers (HE) used for air and other gas applications. In the present work an attempt is made to enhance the heat transfer of DPHE with helical fins and vortex generator. The working fluids are air and steam (water vapour) along outer and inner pipes. The parameters considered are helix angles, i.e. 350 , 400 , & 450 and pitch size i.e. 80 mm, 75 mm and 70 mm, and a vertex generator. CATIA V5 and Autodesk CFD are used for modelling and analysis. It is found that 400 angle helix fin 70 mm pitch along Delta Wing type (Triangular) vortex generator (VG) gives best performance


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Reza Aghayari ◽  
Heydar Maddah ◽  
Malihe Zarei ◽  
Mehdi Dehghani ◽  
Sahar Ghanbari Kaskari Mahalle

This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%–0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%–24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.


2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4267-4275
Author(s):  
Qusay Jasim ◽  
Noah Saleh ◽  
Adnan Hussein

A double pipe heat exchanger is significant device for many industrial applications. In this paper, an experimental study using both porous media and nanofluid to enhance heat transfer in a double pipe heat exchanger is performed. The test rig has been fabricated with inner copper pipe of 1.10 m length, 16 mm, and 14 mm outside and inside diameter, respectively. While, the outer PVC pipe is 1 m length, 31 mm, and 27 mm outside and inside diameter, respectively. The inner pipe has been filling with 3 mm diameters of steel balls porous media. The experimental tests were performed utilizing alumina nanofluid (Al2O3-water) with two volume concentrations 0.5% and 1%. The volume flow-rates are in the range of (2-5) Lpm and 10 Lpm through inner and outer pipe, respectively. It was conducted with a constant 28?C inlet temperature of cold fluid-flow inside the inner pipe and 50?C inlet temperature of hot fluid-flow inside the outer pipe. Results indicated that the heat transfer enhanced as nanofluid volume concentrations and volume flow-rates increase. It was observed that effectiveness increases as increase of flow-rate and nanofluid concentrations.


Volume 3 ◽  
2004 ◽  
Author(s):  
Xuelei Chen ◽  
Mauricio A. Sa´nchez ◽  
William H. Sutton

This investigation is part of the composite fuel project in the University of Oklahoma [1]. The composite fuel is a mixture resulted from natural gas resolving in liquid propane, which has a relatively lower storage pressure compared with that of compressed natural gas. Here in this paper, a numerical investigation of conjugate heat transfer among convection, wall conduction and flow boiling in a double-pipe heat exchanger is presented. The heat exchanger has hot fluid flowing in the annular section and propane boiling in the inside tube. A computer program is developed to calculate the conjugate heat transfer of convection, conduction and boiling. In computing the convection and conduction, control volume method and SIMPLE algorithm are used to solve momentum equations and the energy equation of conjugate heat transfer. The contribution of this work is to combine the third kind (Neuman) of boundary condition with the boiling correlations for flow boiling in horizontal tubes in order to calculate the conjugate heat transfer of the whole problem. Two boiling correlations have been selected to give inside tube boiling heat transfer coefficient. Because the boiling coefficient depends on the wall temperature and local propane quality, so we have to solve the boiling correlation, the conduction and the convection governing equations simultaneously. The iteration method and TDMA are used to solve these coupled equations. The two boiling correlations are Chen’s (1966) correlation [2] and Kandlikar’s (1990) correlation [3]. Finally the results are compared with the experiment data. It has been found in low quality range, Kandlikar’s result is close to the experiment data. Because very few data of propane flow boiling can be found in literature, we use propane pool boiling data by Shen, Spindler and Hahne (1997) [4] to estimate parameter Ffl in Kandlikar’s correlation. The influence of simultaneously developing velocity and temperature field at entrance length in annular passage is considered and discussed in detail. The wall conduction resistance is also compared with convection and boiling resistance in the whole length of the heat exchanger. The completed computer program can be used to the design of shell and tube heat exchangers.


2021 ◽  
pp. 300-300
Author(s):  
Sobhanadri Anantha ◽  
Senthilkumar Gnanamani ◽  
Vivekanandan Mahendran ◽  
Venkatesh Rathinavelu ◽  
Ramkumar Rajagopal ◽  
...  

The inclusion of baffles in a double pipe heat exchanger is becoming increasingly important as it improves the heat exchanger's performance. CFD analysis is used in this paper to investigate the performance of double pipe heat exchangers with and without helical baffles on both shell tube sides. The 3D Computation Fluid Dynamics (CFD) model was created in Solid Works, and the FloEFD software was used to analyze the conjugate Heat Transfer between the heat exchanger's tube and shell sides. Heat transfer characteristic like Outlet temperature of shell and tube are investigated along with pressure drop on shell and tube side. Based on CFD results of Double Pipe Heat exchanger with helical baffle on both shell side and tube side (Type 4) gives the better results than the other type of heat exchangers with an increased pressure drop than the others, results reveals that type 4 outlet temperature of shell side is 8% higher and on tube side it is 5.5% higher, also pressure drop on shell side is 12% higher and on tube side it is 42% higher than the other types.


2018 ◽  
Vol 7 (3.27) ◽  
pp. 162
Author(s):  
C Gnanavel ◽  
R Saravanan ◽  
M Chandrasekaran

The double tube heat exchanger is a device in which the inner tube carries the hot fluid.  Phase Changing Material is the energy storage device is used for Solar heater applications to maintain the constant temperature, in the present study of this work is CFD Analysis of plain tube heat exchanger with Phase Changing Material (PCM) and without Phase Changing Material (PCM), Charging time, liquid volume fraction with the various Heat Transfer Fluid (HTF) inlet temperature 70, 75, 80 deg Celsius and various flow conditions of laminar flow of 2000 Re, Transition flow of 4000 Re and Turbulent flow of 10,000 Re  


2019 ◽  
Vol 5 (10) ◽  
pp. 3
Author(s):  
Sunil Kumar ◽  
Ravindra Mohan

Heat exchanger is an important device which is used in thermal systems in many industrial fields. Nano fluids are recently employed as coolants to improve the efficacy of heat exchangers. Regarding unique characteristics of Nano fluids, research studies in this area have witnessed a remarkable growth. Latest investigations conducted on use of Nano fluids in heat exchangers including those carried out on plate heat exchangers, double pipe heat exchangers, shell and tube heat exchangers, and compact heat exchangers are reviews and summarized. Meanwhile, some very interesting aspects of Nano fluids in combination with heat exchangers are presented.  The challenges and prospects for future research are presented in this paper.


Author(s):  
Hossein Arasteh ◽  
Mohammad Reza Salimpour ◽  
Mohammad Reza Tavakoli

PurposeIn the present research, a numerical investigation is carried out to study the fluid flow and heat transfer in a double-pipe, counter-flow heat exchanger exploiting metal foam inserts partially in both pipes. The purpose of this study is to achieve the optimal distribution of a fixed volume of metal foam throughout the pipes which provides the maximum heat transfer rate with the minimum pressure drop increase.Design/methodology/approachThe governing equations are solved using the finite volume method. The metal foams are divided into different number of parts and positioned at different locations. The number of metal foam parts, their placements and their volume ratios in each pipe are sought to reach the optimal conditions. The four-piece metal foam with optimized placement and partitioning volume ratios is selected as the best layout. The effects of the permeability of metal foam on the Nusselt number, the performance evaluation criteria (PEC) and the overall heat transfer coefficient are investigated.FindingsIt was observed that the heat transfer rate, the overall heat transfer coefficient and the effectiveness of the heat exchanger can be improved as high as 69, 124 and 9 per cent, respectively, while the highest value of PEC is 1.36.Practical implicationsPorous materials are widely used in thermo-fluid systems such as regenerators, heat sinks, solar collectors and heat exchangers.Originality/valueHaving less pressure drop than fully filled heat exchangers, partially filled heat exchangers with partitioned metal foams distributed optimally enhance heat transfer rate more economically.


Author(s):  
G. Arvind Rao ◽  
Yeshyahou Levy

Finned tubes are one of the most widely used means of passively enhancing the heat transfer in circular tubes. Many investigators have proposed different correlations for predicting the performance of such heat exchangers based on their experimental investigations. However, the practical usage of such correlations is limited because of the variety of parameters that can influence Nusselt number and friction factor. Most of the correlations either have been developed with limited databases, or are geometry specific. Using CFD for analyzing performance of such heat exchangers is very computational intensive and hence cannot practically be applied for design optimization purposes. On the other hand, empirical correlations have many limitations in terms of their applicability. The objective of the present article is to present a physically based model for evaluating heat transfer and frictional loss for an internally and / or externally finned double pipe heat exchanger that can be applied in a wide range of operating conditions of practical importance. This paper describes a simple semi-empirical-numerical methodology to evaluate heat transfer and pressure drop characteristics in a finned tube heat exchanger with internal and/or external fins. Conduction and turbulent forced convection are the prominent modes of heat transfer. In order to resolve the operational characteristics of double pipe finned heat exchangers, a numerical methodology is presented which uses well known existing correlations for flow in a smooth pipe and flow over a flat plate. The method of successive substitution is used to solve the problem numerically. The proposed methodology is applied to some simple cases and the results compare well with existing data and correlations available in the literature. It is found that the addition of fins to such double pipe heat exchangers reduce the Nusselt Number; however the corresponding heat transfer rate is enhanced owing to the increase in the overall heat transfer area.


Sign in / Sign up

Export Citation Format

Share Document