scholarly journals Cooling of a heating cylinder by confined impacting air jets

2016 ◽  
Vol 26 (7) ◽  
pp. 2013-2032 ◽  
Author(s):  
Nicolas Chauchat ◽  
Eric Schall ◽  
Mathieu Mory ◽  
Marta de la Llave Plata ◽  
Vincent G. Couaillier

Purpose The purpose of this paper is to investigate a new cooling process of a heated cylinder with confined impacting air jet. Design/methodology/approach To do this the authors used experience-numerical and numerical-numerical comparisons. The experimental facility, designed and built at the Pau University, consists in air jets impacting around a heated circular cylinder. As the inlet velocity magnitude is low (Vin=4.37 m/s – Machin=0.0125), using a compressible solver for numerical simulations presents a number of difficulties. For this low Mach number configuration, the authors compare the performance of three different solvers in this paper. Two of them are compressible, one based on the finite volume approach and the other on a discontinuous Galerkin method, and the third one is an incompressible solver. Some of the numerical results are compared to experimental data. Findings Comparisons between the results from 3D and 2D computations support the relevance of 2D models. Some of the numerical results are compared to experimental data. Research limitations/implications The confined aspect of the set-up reduces experimental measurement to intrusive measures. It should be noted that the temperature measurement given by thermocouples is always considered as “global” or “average”. Originality/value Future aircraft technology will increasingly rely on electrical power. The substitution of mechanical energy by electrical energy will lead to an increasing amount of heat power that need be evacuated. Innovative cooling processes have to be set up according to constraints imposed by the technological design.

2021 ◽  
Vol 65 (2-4) ◽  
pp. 256-263
Author(s):  
Mario A. Cucumo ◽  
Vittorio Ferraro ◽  
Dimitrios Kaliakatsos ◽  
Francesco Nicoletti ◽  
Albino Gigliotti

In this study, the thermal and electrical modeling of a photovoltaic panel is performed to evaluate its temperature profiles, electrical efficiency and the electrical power supplied. The energy balance equations under transient conditions of all the layers that make up the panel are discretized by the finite difference technique and solved with the implicit method. The results are validated with experimental data provided by an experimental set-up located on the roof of a building of the Department of Mechanical, Energy and Management Engineering (DIMEG) of the University of Calabria. The comparison with the experimental data allows us to see an excellent approximation of the distribution of temperatures inside the panel and in particular of the photovoltaic cells, accurately evaluating the effect on electrical efficiency and the electrical power supplied. The validation was performed with reference to a clear winter day and a clear summer day. The mean square error was about 1.5°C on the panel temperature and about 3 W on the electrical power (1.2% of the maximum power).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ran Bi ◽  
Shady Ali ◽  
Eric Savory ◽  
Chao Zhang

PurposeThis study aims (1) to numerically investigate the characteristics of a human cough jet in a quiescent environment, such as the variation with time of the velocity field, streamwise jet penetration and maximum jet width. Two different turbulence modelling approaches, the unsteady Reynolds-averaged Navier–Stokes (URANS) and large eddy simulation (LES), are used for comparison purposes. (2) To validate the numerical results with the experimental data.Design/methodology/approachTwo different approaches, the URANS and LES, are used to simulate a human cough jet flow. The numerical results for the velocity magnitude contours and the spatial average of the two-dimensional velocity magnitude over the corresponding particle image velocimetry (PIV) field of view are compared with the relevant PIV measurements. Similarly, the numerical results for the streamwise velocity component at the hot-wire probe location are compared with the hot-wire anemometry (HWA) measurements. Furthermore, the numerical results for the streamwise jet penetration are compared with the data from the previous experimental work.FindingsBased on the comparison with the URANS approach and the experimental data, the LES approach can predict the temporal development of a human cough jet reasonably well. In addition, the maximum width of the cough jet is found to grow practically linearly with time in the far-field, interrupted-jet stage, while the corresponding axial distance from the mouth of the jet front increases with time in an approximately quadratic manner.Originality/valueCurrently, no numerical study of human cough flow has been conducted using the LES approach due to the following challenges: (1) the computational cost is much higher than that of the URANS approach; (2) it is difficult to specify the turbulent fluctuations at the mouth for the cough jet properly; (3) it is necessary to define the appropriate conditions for the droplets to obtain statistically valid results. Therefore, this work fills this research gap.


2018 ◽  
Vol 29 (18) ◽  
pp. 3572-3581
Author(s):  
Suihan Liu ◽  
Ali Imani Azad ◽  
Rigoberto Burgueño

Piezoelectric energy harvesting from ambient vibrations is well studied, but harvesting from quasi-static responses is not yet fully explored. The lack of attention is because quasi-static actions are much slower than the resonance frequency of piezoelectric oscillators to achieve optimal outputs; however, they can be a common mechanical energy resource: from large civil structure deformations to biomechanical motions. The recent advances in bio-micro-electro-mechanical systems and wireless sensor technologies are motivating the study of piezoelectric energy harvesting from quasi-static conditions for low-power budget devices. This article presents a new approach of using quasi-static deformations to generate electrical power through an axially compressed bilaterally constrained strip with an attached piezoelectric layer. A theoretical model was developed to predict the strain distribution of the strip’s buckled configuration for calculating the electrical energy generation. Results from an experimental investigation and finite element simulations are in good agreement with the theoretical study. Test results from a prototyped device showed that a peak output power of 1.33 μW/cm2 was generated, which can adequately provide power supply for low-power budget devices. And a parametric study was also conducted to provide design guidance on selecting the dimensions of a device based on the external embedding structure.


2013 ◽  
Vol 8 (1) ◽  
pp. 155892501300800
Author(s):  
François M. Guillot ◽  
Haskell W. Beckham ◽  
Johannes Leisen

In the past few years, the growing need for alternative power sources has generated considerable interest in the field of energy harvesting. A particularly exciting possibility within that field is the development of fabrics capable of harnessing mechanical energy and delivering electrical power to sensors and wearable devices. This study presents an evaluation of the electromechanical performance of hollow lead zirconate titanate (PZT) fibers as the basis for the construction of such fabrics. The fibers feature individual polymer claddings surrounding electrodes directly deposited onto both inside and outside ceramic surfaces. This configuration optimizes the amount of electrical energy available by placing the electrodes in direct contact with the surface of the material and by maximizing the active piezoelectric volume. Hollow fibers were electroded, encapsulated in a polymer cladding, poled and characterized in terms of their electromechanical properties. They were then glued to a vibrating cantilever beam equipped with a strain gauge, and their energy harvesting performance was measured. It was found that the fibers generated twice as much energy density as commercial state-of-the-art flexible composite sensors. Finally, the influence of the polymer cladding on the strain transmission to the fiber was evaluated. These fibers have the potential to be woven into fabrics that could harvest mechanical energy from the environment and could eventually be integrated into clothing.


2016 ◽  
Vol 26 (3/4) ◽  
pp. 722-744 ◽  
Author(s):  
Marcela A. Cruchaga ◽  
Carlos Ferrada ◽  
Nicolás Márquez ◽  
Sebastián Osses ◽  
Mario Storti ◽  
...  

Purpose – The present work is an experimental and numerical study of a sloshing problem including baffle effects. The purpose of this paper is to assess the numerical behavior of a Lagrangian technique to track free surface flows by comparison with experiments, to report experimental data for sloshing at different conditions and to evaluate the effectiveness of baffles in limiting the wave height and the wave propagation. Design/methodology/approach – Finite element simulations performed with a fixed mesh technique able to describe the free surface evolution are contrasted with experimental data. The experiments consist of an acrylic tank of rectangular section designed to attach baffles of different sizes at different distance from the bottom. The tank is filled with water and mounted on a shake table able to move under controlled horizontal motion. The free surface evolution is measured with ultrasonic sensors. The numerical results computed for different sloshing conditions are compared with the experimental data. Findings – The reported numerical results are in general in good agreement with the experiments. In particular, wave heights and frequencies response satisfactorily compared with the experimental data for the several cases analyzed during steady state forced sloshing and free sloshing. The effectiveness of the baffles increases near resonance conditions. From the set of experiments studied, the major reduction of the wave height was obtained when larger baffles were positioned closer to the water level at rest. Practical implications – Model validation: evaluation of the effectiveness of non-massive immersed baffles during sloshing. Originality/value – The value of the present work encompass the numerical and experimental study of the effect of immersed baffles during sloshing under different imposed conditions and the comparison of numerical results with the experimental data. Also, the results shown in the present work are a contribution to the understanding of the role in the analysis of the proposed problem of some specific aspects of the geometry and the imposed motion.


2014 ◽  
Vol 14 (4) ◽  
pp. 664-671 ◽  
Author(s):  
Norashikin Ahmad Kamal ◽  
Heekyung Park ◽  
Sangmin Shin

Small-scale hydropower is the generation of electrical power of 10 MW or less from the transformation of kinetic energy in flowing water to mechanical energy in a rotating turbine to electrical energy in a generator. The technology is especially useful when installed with a stormwater infrastructure in countries teeming with abundant rainfall. It is upon this concept that this study is being pursued to assess the implementation of microhydropower within a stormwater infrastructure. In order to achieve sustainability of development, small-scale hydropower should be beneficial in the implementation of stormwater infrastructure, especially in countries that have abundant rainfall. The aim of this study is to provide an assessment method for microhydropower implementation within a stormwater infrastructure. PCSWMM software was used to simulate the flowing water at a detention outlet. Modification of the current detention pond was made to optimise the quantity and quality of water supplied to the turbine. Two important parameters in the modification design are quantity and quality of storm water, which optimise the energy generated. The total power that can be harnessed from the design is theoretically from 500 W to 0.5 MW. Therefore, it can be safely concluded that the implementation of microhydropower within a stormwater infrastructure is technologically feasible.


Author(s):  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco

Purpose Thermochemical conversion processes are one of the possible solutions for the flexible production of electric and thermal power from biomass. The pyrolysis degradation process presents, among the others, the interesting features of biofuels and high energy density bio-oil production potential high conversion rate. In this paper, numerical results of a slow batch and continuous fast pyrolyzers, are presented, aiming at validating both a tridimensional computational fluid dynamics-discrete element method (CFD–DEM) and a monodimensional distributed activation energy model (DAEM) represents with data collected in dedicated experiments. The purpose of this paper is then to provide reliable models for industrial scale-up and direct design purposes. Design/methodology/approach The slow pyrolysis experimental system, a batch of small-scale constant-pressure bomb for allothermic conversion processes, is presented. A DEM numerical model has been implemented by means of a modified OpenFOAM solver. The fast pyrolysis experimental system and a lab scale screw reactor designed for biomass fast pyrolysis conversion are also presented along with a 1D numerical model to represent its operation. The model which is developed for continuous stationary feeding conditions and based on a four-parallel reaction chemical framework is presented in detail. Findings The slow pyrolysis numerical results are compared with experimental data in terms of both gaseous species production and reduction of the bed height showing good predictive capabilities. Fast pyrolysis numerical results have been compared to the experimental data obtained from the fast pyrolysis process of spruce wood pellet. The comparison shows that the chemical reaction modeling based on a Gaussian DAEM is capable of giving results in very good agreement with the bio-oil yield evaluated experimentally. Originality/value As general results of the proposed activities, a mixed experimental and numerical approach has demonstrated a very good potential in developing design tools for pyrolysis development.


2017 ◽  
Vol 14 (2) ◽  
pp. 165-172
Author(s):  
Lebied Abdelaziz ◽  
Necib Brahim ◽  
Sahli Mohamed Lakhdar

Purpose Safety improvement and cost reduction have a strong influence on the way to achieve maintenance operations of complex structures, in particular in air transportation, in civil engineering and others. In this case, piezoelectric ceramics such as sensors and actuators have been used. The advantages of piezoelectric materials include high achievable bandwidth, reliability, compactness, lightness and ease of implementation, thus making them well-suited to be used as actuators and sensors in the case of onboard structures. In this context, this study based around the examination of health and deformation of smart structures, taking into consideration the mechanical and piezoelectric behaviour of sensors and actuators, mechanical contact as well as the initial conditions and the imposed boundary conditions. This paper aims to present an approach for modeling of an intelligent structure by the finite element method. This structure is of aluminum type beam with elastic behaviur where piezoelectric rectangular pellets discreetly spread on the surface of the beam are instrumented. The numerical results were computed and compared to the experimental tests available in the literature and the results show the effectiveness of these piezoelectric (PZT) elements, depending on their positions, and to control the deformed structure, good agreement has been found between the experimental data and numerical predictions. Design/methodology/approach Numerical modeling by finite elements model for the measurement of the deformation and the change in shape of a clamped-free structure composed of both elastic and piezoelectric materials have been given by using the Ansys® software. The numerical results were valid by comparisons with analytical and experimental results find in the literature. Findings The numerical results showing a good correlation and agree very well. It was also concluded that the actuator and the sensor will be better placed at the housing because it is the position or the actuator that has the greatest impact and where the sensor gives the greatest signal. They are said to be co-located as glues one below the other on either side of the beam. Originality/value These materials have an inverse piezoelectric effect allowing them to control the form and present any noise or vibration at any time or position on the structure. The study presented in this paper targets the modeling of a PZT beam device for deform generation by transforming electrical energy into usable load. In this paper, a unimorph piezoelectric cantilever with traditional geometry is investigated for micromanipulation by using the software Ansys®.


2018 ◽  
Vol 15 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Yasser M. Ahmed ◽  
A.H. Elbatran

Purpose This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment. Design/methodology/approach It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows. Findings The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications. Originality/value The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.


Author(s):  
Gunnar Tamm ◽  
J. Ledlie Klosky ◽  
Jacob Baxter ◽  
Luke Grant ◽  
Isaac Melnick ◽  
...  

Electrical power generation in austere settings, such as combat zones, places a heavy burden on the US Army; high costs in both dollars and lives lost require that every drop of fuel be used effectively and efficiently. In remote locations such as combat outposts (COPs) and small forward operating bases (FOBs) in Afghanistan, electrical power derived from the Army’s standard Advanced Medium Mobile Power Sources (AMMPS) generator is even used to heat water for showers and heat living spaces. This heating requires conversion of thermal energy to mechanical energy, which is then converted to electrical energy and back to heat. Thus, a significant fuel savings could be realized through the more efficient production of heat. A combined heat and power system is proposed; efficiency is increased by routing the generator exhaust through simple ducting to a standard gas hot water heater to produce hot water with waste heat. With funding from the U.S. Army Rapid Equipping Force, cadets and faculty at the United States Military Academy designed, built and tested a system for under $1,000 in parts which was readily coupled to a 5 kW AMMPS generator to produce hot shower water. Results indicate a possible fuel savings of 1500–2000 gallons per year, 20–35% increased fuel utility, and the ability to provide 10–20 five gallon showers during every 5 hours of operation of each 5 kW generator. At a fuel cost of $20–50 per gallon in the deployed environment, and considering the large inventory of deployed generators, the payback for the Army could be tremendous.


Sign in / Sign up

Export Citation Format

Share Document