Study on curved surface design of sliding pair based on stepped topography model

2019 ◽  
Vol 72 (1) ◽  
pp. 86-92 ◽  
Author(s):  
Zhenpeng Wu ◽  
Vanliem Nguyen ◽  
Zhihong Zhang ◽  
Liangcai Zeng

Purpose The stepped topography of the friction pairs mainly causes the fluid film thickness to change in the direction of motion. In this region, there have very few topographical design methods for continuous or non-linear distribution of the fluid film. The purpose of this study is to analyze the effect of the curved surface on the performance of the liquid film. Design/methodology/approach First, a numerical simulation is used to solve the optimal bearing capacity and friction coefficient of the liquid film under the condition of the minimum film thickness. Then, the curved surface described by the sinusoidal curve equation is applied in the transitional region of maximum and minimum film thickness. The bearing capacity and the friction coefficient of the liquid film are respectively simulated and compared in the same condition of the minimum film thickness. Findings The research results show that the liquid film using the curved surface transition model, the optimal bearing capacity is significantly increased by 32 per cent while the optimal friction coefficient is clearly reduced by 38 per cent in comparison with using stepped surface model. Originality/value The friction pair with curved transition enables better lubrication performance of the liquid film and better adaptability under unstable conditions.

2019 ◽  
Vol 71 (6) ◽  
pp. 772-778
Author(s):  
Zhenpeng Wu ◽  
Xianzhong Ding ◽  
Liangcai Zeng ◽  
Xiaolan Chen ◽  
Kuisheng Chen

Purpose This paper aims to use the method of curve splicing to combine the slip zone and the no-slip zone to further improve the lubrication performance of the liquid film. The combination of the slip zone and the no-slip zone of an existing heterogeneous surface is still a single line stitching method so that a very large residual space at the surface of the friction pairs remains present, necessitating further improvement of the joining scheme between the slip zone and the no-slip zone in heterogeneous surfaces. Design/methodology/approach A set of discrete sinusoids is used as the splicing track for both the slip zone and the no-slip zone, the starting point and amplitude of the curve are introduced as the simulation variables and the effects of these variables on the bearing capacity and friction coefficient of the liquid film are comprehensively analyzed. Findings The results show that the method of selecting the sinusoidal curve as the slip zone and the no-slip zone trajectory, which is based on the existing method of linear stitching, can further enhance the bearing capacity and reduce the friction coefficient of the liquid film. Originality/value This method can further enhance the bearing capacity and reduce the friction coefficient of the liquid film.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuqin Yang ◽  
Q.H. Xiao ◽  
Chunhui Geng

Purpose This study aims to study the effect of micro-groove texture geometric parameters on the lubrication characteristics of the tripod universal coupling. Design/methodology/approach The Navier–Stokes equation was used to analyse the influence of micro-groove geometric parameters on the coupling’s lubrication performance. Further, Kriging approximate model and neighborhood cultivation genetic algorithm (NCGA) were used to optimise the micro-groove geometric parameters and improve the coupling’s lubrication performance. Findings The results show that as the micro-groove depth and width increase, respectively, the oil film-bearing capacity first increases and then decreases; on the contrary, the friction coefficient first decreases and then increases. With the increase of the micro-groove inclination angle, the bearing capacity of the oil film first increases and then remains unchanged. At the same time, the friction coefficient first decreases and then increases slightly. The lubricating performance of the optimised coupling is significantly improved: the optimised oil film-bearing capacity increases by 12.5%, the friction coefficient reduces by 14% and the maximum oil film pressure increases by 4.3%. Originality/value At present, the grease lubrication performance of the micro-groove textured tripod universal coupling has not been studied. The micro-groove parameters are optimised, and the coupling’s lubrication performance is improved greatly by the Kriging model and NCGA algorithm. It is of great significance to extend the coupling’s fatigue life.


2019 ◽  
Vol 71 (4) ◽  
pp. 564-572
Author(s):  
Fangrui Lv ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhu-Shi Rao

Purpose The purpose of this paper is to improve the lubrication performance of a water-lubricated polymer bearing with axial grooves, especially enlarge the minimum film thickness. Design/methodology/approach The bearing diameter is enlarged near the axial ends of the journal, with axial openings of a trumpet shape. A numerical model is developed which considers the proposed trumpet-shaped openings, bush deformation and grooves. The generatrix of the trumpet-shaped opening is assumed to be a paraboloid. Three different variations are covered, and the influences of the trumpet-shaped openings’ parameters on the bearing performance are analyzed. Findings The appropriate trumpet-shaped openings at the axial ends effectively increase the minimum film thickness, and the impact of trumpet-shaped openings on load carrying capacity is very small or even negligible. For the water-lubricated polymer bearing with axial grooves analyzed in this paper, the appropriate trumpet-shaped openings increase the minimum film thickness from 0.53 to 11.14 µm and decrease the load carrying capacity by 2.48 per cent. Practical implications The results of this study can be applied to marine propeller shaft systems and other systems with polymer bearings. Originality/value This paper has presented an approach for significantly increasing the minimum film thickness of a water-lubricated polymer bearing. A study on the performance improvement of water-lubricated polymer bearings with axial grooves is of significant interest to the research community.


2016 ◽  
Vol 68 (2) ◽  
pp. 183-190 ◽  
Author(s):  
Xingbao Huang ◽  
Youqiang Wang

Purpose – This paper aims to investigate the mechanism of spur gears running-in and to solve the lubrication problems of teeth running-in. Design/methodology/approach – The elastohydrodynamic lubrication (EHL) model considering solid particles was established by applying multi-grid and multiple-grid integration methods to the numerical solution. Findings – In the region where debris settle, transient pressure increases sharply, and a noticeable increase in the running-in load causes a remarkable increase in both the centre and maximum pressures and a slight increase in the minimum film thickness. Roughness wavelength makes a considerable difference to the minimum film thickness at double-to-single tooth transient. A considerable increase in rotation velocity can cause a remarkable reduction in both the centre and maximum pressures but an amazing increase in the minimum film thickness. The effects of roughness amplitude on the maximum pressure are considerably distinct. Research limitations/implications – Research on EHL of spur gears in the running-in process considering solid particles, surface roughness and time-variant effect is meaningful to practical gears running-in. Thermal effect can be included in the next study. Practical implications – The analysis results can be applied to predict and improve lubrication performance of the meshing teeth. Social implications – The aim is to reduce gears’ manufacture and running-in costs and improve economic performance. Originality/value – The EHL model that considers solid particles was established. The Reynolds equation was deduced taking the effects of solid particles into account. The EHL of spur gears running-in was investigated considering the time-variant effect, surface roughness, running-in load and rotation speed.


2019 ◽  
Vol 71 (9) ◽  
pp. 1080-1085 ◽  
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Yi Liu ◽  
Longjie Dai ◽  
Zhaohua Shang

Purpose The purpose of this paper is to use elastohydrodynamic lubrication (EHL) theory to study the variation of the equivalent curvature radius “R” on the change of oil film thickness, pressure, temperature rise and friction coefficient in the contact zone between bush-pin in industrial chain drive. Design/methodology/approach In this paper, the contact between bush and pin is simplified as infinitely long line contact. The lubrication state is studied by numerical simulation using steady-state line contact thermal EHL. The two constitutive equations, namely, Newton fluid and Ree–Eyring fluid are used in the calculations. Findings It is found that with the increase of equivalent curvature radius, the thickness of oil film decreases and the temperature rise increases. Under the same condition, the friction coefficient of Newton fluid is higher than that of Ree–Eyring fluid. When the load increases, the oil film thickness decreases, the temperature rise increases and the friction coefficient decreases; and the film thickness increases with the increase of the entraining speed under the condition “R < 1,000 mm”. Research limitations/implications The infinite line contact assumption is only an approximation. For example, the distances between the two inner plates are 5.72 mm, by considering the two parts assembled into the inner plates, the total length of the bush is less than 6 mm. The diameter of the pin and the bore diameter of the bush are 3.28 and 3.33 mm. However, the infinite line contact is also helpful in understanding the general variation of oil film characteristics and provides a reference for the future study of finite line contact of chain problems. Originality/value The change of the equivalent radius R on the variation of the oil film in the contact of the bush and the pin in industrial chain drive was investigated. The size effect influences the lubrication characteristic greatly in the bush-pin pair.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
J. C. Atwal ◽  
R. K. Pandey

Abstract This paper presents the performance behaviors (coefficient of friction, minimum film thickness, and pressure distributions) of a fluid film thrust bearing using a newly conceived micro-texture on pads. In the numerical investigation, the Reynolds equation has been discretized using the finite element formulation followed by the solution of algebraic equations employing the Fischer-Burmeister-Newton-Schur (FBNS) algorithm, which satisfies the mass-conservation phenomenon arising due to the commencement of cavitation in the lubricating film. The effects of parameters (micro-texture/pocket depth, circumferential/radial length of micro-texture and pocket, etc.) of new texture on the performance behaviors of the thrust bearing have been explored and presented herein for the range of input data. It has been found that the minimum film thickness has increased up to 48%, and the friction coefficient reduced up to 24% in comparison to conventional plain pad case.


Author(s):  
Yanfeng Han ◽  
Guo Xiang ◽  
Jiaxu Wang

Abstract The mixed lubrication performance of water-lubricated coupled journal and thrust bearing (simplified as coupled bearing) is investigated by a developed numerical model. To ensure the continuity of hydrodynamic pressure and flow at the common boundary between the journal and thrust bearing, the conformal transformation is introduced to unify the solution domain of the Reynolds equation. In the presented study, the coupled effects between the journal and thrust bearing are discussed. The effects of the thrust bearing geometric film thickness on the mixed lubrication performance, including the load capacity, contact load and friction coefficient, of the journal bearing are investigated. And the effects of the journal bearing eccentricity ratio on the mixed lubrication performance of the thrust bearing are also investigated. The simulated results indicate the mutual effects between the journal and thrust bearing cannot be ignored in the coupled bearing system. The increasing thrust bearing geometric film thickness generates a decrease in load capacity of journal bearing. There exists an optimal eccentricity ratio of journal bearing that yields the minimum friction coefficient of the thrust bearing.


1992 ◽  
Vol 114 (2) ◽  
pp. 311-316 ◽  
Author(s):  
H. Aramaki ◽  
H. S. Cheng ◽  
D. Zhu

The lubrication performance of rib/roller end contacts of cylindrical roller bearings was studied both theoretically and experimentally for end-crowned rollers and inclined ribs. A partial EHL program was used to calculate the film thickness and the friction in the rib/roller end contact. Calculated minimum film thickness shows a strong load dependence although the central film thickness is still a weak function of the load. The influence of the contact position on the film thickness was also investigated for roller skewness and design tolerance. It was found that the contact location affects the minimum film thickness strongly in spite of a weak influence on the central film thickness. Friction and scuffing experiments were conducted on a special rig, which can achieve arbitrary slide/roll ratio to simulate the rib/roller end contacts. Good agreements were found between measured and calculated friction based on the assumption that the lubricant was Newtonian. In scuffing experiments, scuffing propagation was observed on the rib contact surface. The critical load for scuffing is strongly correlated with the sliding velocity. The critical load at high speeds is lower than that at low speeds although the friction at high speeds is lower. These data imply the importance of the contact location and the wear process for film breakdown.


2019 ◽  
Vol 71 (5) ◽  
pp. 677-685 ◽  
Author(s):  
Hongyang Hu ◽  
Ming Feng

Purpose The purpose of this paper is to investigate the effect of the rounding in bump foil on the static performance of air foil journal bearings. Design/methodology/approach During the study, the bending moment of the new foil structure with rounding is proposed, and the bump foil stiffness is obtained from the elastic deformation energy theory. The validity of the presented foil model is verified through comparison with previous models. The static characteristics of foil bearings such as film thickness and attitude angle are obtained using a fully coupled elastic-gas algorithm and are compared to models with various rounding radius and friction coefficients. Findings There is an optimal rounding radius that makes the stiffness of bump foil maximum. As the static load increases, the minimum film thickness is proportional to the rounding radius but the attitude angle is inversely proportional. The effect of rounding with a large friction coefficient becomes negligible. Originality/value The rounding brings fundamental difference in the structural stiffness and static performance of foil bearings. The results are expected to be helpful to bearing designers, researchers and academicians concerned.


Sign in / Sign up

Export Citation Format

Share Document