Study of behaviour of aluminium oxide nanoparticles suspended in SAE20W40 oil under extreme pressure lubrication

2015 ◽  
Vol 67 (4) ◽  
pp. 328-335 ◽  
Author(s):  
Avinash A. Thakre ◽  
Animesh Thakur

Purpose – The purpose of this paper is to include investigation on extreme pressure lubrication behaviour of Al2O3 nanoparticles suspended in SAE20W40 lubricating oil. Effects of nanoparticles size (40-80 nm) and its concentration (0-1 per cent) on the coefficient of friction is studied using pin-on-disc tribotester. Design/methodology/approach – Taguchi technique is used to optimize the process parameters for lower coefficient of friction. L18 orthogonal array involving six levels for one factor and three levels for remaining three factors is selected for the experimentation. The parameters selected for the study are sliding speed, normal load, nanoparticles size and its concentration in base oil. Findings – It has been found that the presence of nanoparticles in proper concentration shows excellent tribological improvement in frictional characteristics compared to the base oil. The optimal combination of the parameters for minimum coefficient of friction is found to be 0.8 per cent concentration of 60 nm sized Al2O3 nanoparticles, 1,200 rpm sliding speed and 160 N of normal load. The mechanism of friction reduction in presence of nanoparticles is investigated using scanning electron microscopy. Originality/value – This is the original work.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Srinivasula Reddy I. ◽  
Vadivuchezhian Kaliveeran

Purpose This paper aims to focus on the effect of normal load, sliding speed and temperature on the coefficient of friction of Al 6061-T6 alloy under dry sliding conditions. Design/methodology/approach Dry sliding experiments were conducted using rotary type pin on disk tribometer. Pins with 3 mm radius of contact and circular disks of 165 mm diameter were fabricated to simulate Hertzian contact configuration. Experiments were conducted by applying three different normal loads (1, 1.5 and 2 kg) and three different sliding speeds (1.25, 2 and 3 m/s) at different temperatures [room temperature (31 ± 1 °C), 60 °C, 100 °C and 150 °C]. Findings Coefficient of friction at end of the first cycle of sliding, stabilized stage, unsteady state and steady state are reported elaborately in this study. Adhesive and abrasive wear mechanisms were observed in the dry sliding of Al 6061- T6 alloy contacts from the microscopic analysis of worn contact surfaces. The coefficient of friction was more influenced by the increase in normal load than the increase in sliding speed and temperature. Practical implications The results obtained from this study are significant for the design of aluminium-to-aluminium contacts in aerospace engineering and automobile engineering. Originality/value This study reveals the coefficient of friction of aluminium-to-aluminium (Al 6061-T6 alloy) contacts under cylinder on flat contact configuration.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1438
Author(s):  
Ankush Raina ◽  
Mir Irfan Ul Haq ◽  
Ankush Anand ◽  
Sanjay Mohan ◽  
Rajiv Kumar ◽  
...  

Nanodiamond (ND) particles are effective lubricant additives. Attention of research has shifted towards investigating the particles as secondary additives. ND particles provide more benefits as secondary additives than as the sole lubricant additive for steel–steel contacts. In this work, the influence of ND particles as secondary additives on oil lubrication of steel–aluminium tribopair (hard–soft contact) was examined. AISI 52100 steel balls were slid against AA2024 aluminium alloy discs, in the presence of polyalphaolefin (PAO) base oil, in boundary lubrication regime (applied normal load: 10 N to 50 N). Primary additives were copper oxide (CuO) and hexagonal boron nitride (h-BN) nanoparticles. The addition of ND particles to PAO, with CuO and h-BN as primary additives, at the lowest applied normal load of 10 N: (i) decreased the volumetric wear of the aluminium discs by 28% and 63%, respectively, and (ii) decreased the coefficient of friction by 15% and 33%, respectively. At the highest applied normal load of 50 N, it: (i) decreased the volumetric wear of the aluminium discs by 20% and 38%, respectively, and (ii) decreased the coefficient of friction by 5.4% and 8%, respectively. ND particles as secondary additives significantly reduce energy loss and power loss as a consequence of an effective reduction in friction during sliding. Unique characteristics of ND particles—such as their (a) physicochemical and thermal properties, (b) ball bearing and polishing effects and (c) synergistic interaction with primary additives to form stable tribofilms—enhance the lubrication performance of steel–aluminium contact. ND particles in combination with h-BN nanoparticles showed the best performance, due to better synergy between the primary additive and the secondary additive. Results from the investigation indicate that ND particles taken as secondary additives in small amount (0.2 wt%) can improve oil lubrication performance of hard–soft contacts in engineering systems.


Author(s):  
M. J. Kadhim ◽  
S. W. E. Earles

Experiments are described in which stationary copper specimens are rubbed in a normal atmosphere against a rotating S62 steel disc under normal loads up to 4·5 lbf. The coefficient of friction is measured at sliding speeds of 93, 220, 328, and 490 ft/s using ⅛-in diameter specimens. Except at the lowest speed a gradual buildup of a continuous copper oxide layer on the disc track is observed with increasing normal load together with a corresponding decrease in the coefficient of friction. Having established an oxide layer on the track the coefficient of friction observed is low for all normal loads. The coefficient of friction is shown to decrease with normal load N and sliding speed U, to be a function of N1/2 U, and to depend on the state of the disc surface. Wear of -in diameter specimens is measured by weighing before and after a test. The wear rate is shown to decrease with sliding speed and increase with load, and for speeds of 220 and 328 ft/s to be a function of N/U. The wear rates measured at 93 ft/s are the same function of N/U for low values of N/U.


2009 ◽  
Vol 147-149 ◽  
pp. 380-386 ◽  
Author(s):  
Jamil Abdo ◽  
Amer Al-Yhmadi

An in-house pin-on-disc apparatus is designed and constructed to perform the tests and the design of experiments technique is utilized to determine the effect of vibration, amplitude of vibration, surface roughness, and sliding speed and their cross influence on coefficient of friction for 304 stainless steel and Alloy 6061 Aluminum. The design is performed using response surface method (RSM). The coefficient of friction (CoF) is analyzed as a nonlinear function of the factors and predicted by a second-order polynomial equation. Results suggested that the presence of vibration affect the friction function CoF considerably for both metals. The friction function linearly decreases with the increases of vibration and amplitude of vibration, non-linearly decreases with the increases of sliding speed and linearly increases with the increases of the surface roughness until the middle range is reached and then there is non-linearly decrease thereafter. Similar trends of friction functions are observed for Alloy 6061 Aluminum with a reduction of almost 15% except for the case with amplitude of vibration where the variation showed more significant affect on the friction function when Alloy 6061 Aluminum disk is used.


2013 ◽  
Vol 388 ◽  
pp. 63-67
Author(s):  
Samion Syahrullail ◽  
Muhammad Amirul Abdul Rahman

Palm fatty acid distillate (PFAD) has potential to be used as a lubricant. PFAD is a by-product from palm oil refinery, and it is classified as non-edible oil. However, vegetable oil has poor thermal performance and high oxidation rate. In this paper, the tribological performance of PFAD in different working temperature was investigated by using four-ball tribotester. Tests were conducted at temperatures 50oC, 75oC, 100oC and 125oC, under a normal load of 40 kg for one (1) hour. The rotational speed was set at 1200rpm. Similar tests were conducted using industrial hydraulic oil as a comparison lubricant. Analyses were focused on the coefficient of friction (CoF), wear scar diameter (WSD) and worn surface observation. Results show that coefficient of friction and wear were increased with the increment of temperature. However, palm fatty acid distillate show a better performance in term of friction reduction compared to industrial hydraulic oil.


2012 ◽  
Vol 585 ◽  
pp. 569-573 ◽  
Author(s):  
S.R. Chauhan ◽  
Sunil Thakur

In this paper the friction and wear characteristics of vinylester and vinylester composites have been investigated under dry sliding conditions for different applied normal load, sliding speed and sliding distance. The experiments have been carried on a pin on disc arrangement at normal room temperature conditions. The influence of friction and wear parameters like normal load, speed, sliding distance and percentage of filler content on the friction and wear rate has been investigated. In this study, a plan of experiments based on the techniques of Taguchi was performed to acquire data in a controlled way. An orthogonal array L27 (313) and Analysis of variance (ANOVA) were applied to investigate the influence of process parameters on the coefficient of friction and sliding wear behaviour of these composites. The Taguchi design of experiment approach eliminates the need for repeated experiments and thus saves time, material and cost. The results showed that with increase in the applied normal load and sliding speed the coefficient of friction and specific wear rate decreases under dry sliding conditions. It is also found that a thin film formed on the counterface seems to be effective in improving the tribological characteristics. The results showed that the inclusion of cenosphere as filler materials in vinylester composites will increase the wear resistance of the composite significantly.


Author(s):  
Slawomir Wos ◽  
Waldemar Koszela ◽  
Andrzej Dzierwa ◽  
Pawel Pawlus

The effect of the apex angle of triangular oil pockets created on a disc surface on friction was studied. Experiments were carried out using an Optimol SRV5 tribotester equipped with a pin-on-disc module under unidirectional lubricated sliding. Both the sample and counter sample was made of steel of 45 Hardness Rockwell C (HRC) hardness. Only 1 ml of oil was put to the inlet side of the contact area at the beginning of each test. All textured surfaces had the same pit-area ratio and an average depth of dimples. Oil pockets were positioned in the spiral array. It was found that the effect of the apex angle of triangular dimples on friction reduction was important. When the normal load was lower, the smallest coefficient of friction was achieved for the sliding pair with a disc apex angle of 60°. Under a larger normal load, a higher apex angle corresponded to a higher coefficient of friction.


2011 ◽  
Vol 110-116 ◽  
pp. 616-620 ◽  
Author(s):  
S. Ilaiyavel ◽  
A. Venkatesan ◽  
N. Nallusamy ◽  
T. Sornakumar

Manganese Phosphate is an Industrial coating used to reduce friction and improve lubrication in sliding components. In this study, the tribology behavior of uncoated, manganese phosphate coated, Manganese Phosphate with oil lubricant AISI D2 steels was investigated. The Surface morphology of manganese phosphate coatings was examined by scanning electron microscope (SEM) and Energy dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel were evaluated through pin on disc test using a sliding velocity of 0.35 m/s under normal load of 5 to35 N and controlled condition of temperature and humidity. The Coefficient of friction and wear loss were evaluated. Based on the results of the wear test, the manganese phosphate with lubricant exhibited the lowest average coefficient of friction 0.13 and the lowest wear loss 0.4 mm3under 35 N load.


1965 ◽  
Vol 180 (1) ◽  
pp. 531-548 ◽  
Author(s):  
S. W. E. Earles ◽  
M. J. Kadhim

The friction force between 1/8, 3/32 and 1/16 in diameter, and the wear of 3/32 in diameter, specimens of En 1A steel sliding on a disc of S62 steel are measured at speeds between 93 and 655 ft/s, the normal load on the specimen varying between 0.2 and 4.5 lbf. The coefficient of friction is shown to be dependent on sliding speed, normal load and specimen diameter, and to be a function of N1/2 U, where N is the normal load and U is the sliding speed. It is suggested that the coefficient of friction is dependent on the specimen contact surface condition which is dependent on the specimen surface temperature. There is evidence to suggest a gradual change in the mechanism of sliding with increasing magnitude of N1/2 U from, (i) metallic abrasion and tearing of an oxide layer, (ii) to skidding on and shallow ploughing of an oxide layer, (iii) to gliding over and shearing of a soft surface layer. It appears that the coefficient of friction is independent of, whereas specimen wear is dependent on, the disc surface condition. At low loads the material transferred from the specimen tends to form a continuous oxide layer on the disc., while at high loads there is the formation and tearing of a thick oxide layer, presenting a more abrasive surface to the specimen with a relative increase in wear. Generally specimen wear per sliding distance increases with N and decreases with U.


Sign in / Sign up

Export Citation Format

Share Document