Discrete element analysis of friction performance for tire-road interaction

2020 ◽  
Vol 72 (7) ◽  
pp. 977-983
Author(s):  
Jiale Lu ◽  
Baofeng Pan ◽  
Tiankai Che ◽  
Dong Sha

Purpose This study aims to investigate the influence of surface texture distribution in respect to the procedure of pavement surface wear on friction performance. Design/methodology/approach The Weierstrass–Mandelbrot (W-M) equation is used to appropriate pavement surface profile. Through this approximation, artificial rough profiles by combining fractal parameters and conventional statistical parameters for different macro-texture are created to simulate the procedure of pavement surface wear. Those artificial profiles are then imported into discrete element model to calculate the interaction forces and friction coefficient between rolling tire and road. Furthermore, wavelet theory is used to decompose the profiles into different scales and explore the correlation between the profiles of each scale and pavement friction. Findings The influence of tire vertical displacement (TVD) on friction coefficient is greater than fractal dimension of road surface texture. When TVD decreases, the profiles can provide higher friction, but the rolling stability of tire is poor. The optimal fractal dimension of road surface is about 1.5 when considering friction performance. The pavement friction performance improves with wavelength from 0.4 to 6.4mm and decreases with wavelength from 12.8 to 51.2mm. Originality/value Artificial fractal curves are generated and analyzed by combining W-M function with traditional parameter, which can also be used to analyze the influence of texture distribution on other pavement performance. The preliminary research provides a potential approach for the evaluation of pavement friction performance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0499/

2020 ◽  
Vol 72 (10) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yafei Deng ◽  
Xiaotao Pan ◽  
Guoxun Zeng ◽  
Jie Liu ◽  
Sinong Xiao ◽  
...  

Purpose This paper aims to improve the tribological properties of aluminum alloys and reduce their wear rate. Design/methodology/approach Carbon is placed in the model at room temperature, pour 680°C of molten aluminum into the pressure chamber, and then pressed it into the mold containing carbon felt through a die casting machine, and waited for it to cool, which used an injection pressure of 52.8 MPa and held the same pressure for 15 s. Findings The result indicated that the mechanical properties of matrix and composite are similar, and the compressive strength of the composite is only 95% of the matrix alloy. However, the composite showed a low friction coefficient, the friction coefficient of Gr/Al composite is only 0.15, which just is two-third than that of the matrix alloy. Similarly, the wear rate of the composite is less than 4% of the matrix. In addition, the composite can avoid severe wear before 200°C, but the matrix alloy only 100°C. Originality/value This material has excellent friction properties and is able to maintain this excellent performance at high temperatures. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2019-0454/


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jinlong Shen ◽  
Tong Zhang ◽  
Jimin Xu ◽  
Xiaojun LIU ◽  
Kun Liu

Purpose This paper aims to improve the tribological performance of grease-lubricated spherical plain bearings (SPBs) under heavy load, dimple-type textures were prepared by laser on the outer surface of the inner ring. The influence of roughness parameters of a textured surface on reducing friction coefficient and temperature rise was also explored. Design/methodology/approach This study adopts a laser processing method to fabricate dimple-type textures. Three-dimensional roughness parameters were used to characterize the textured surfaces. The friction coefficients of five SPBs with surface texture and one original commercially available SPB without surface texture under different nominal loads were measured on a self-established test rig. The data of temperature rise were obtained by nine embedded thermal couples. Findings The results indicate that SPBs with textures generally exhibit lower friction coefficients than the original SPB without textures. The dimple depth has a significant influence on improving the tribological performance, which coincides with the analysis by surface roughness parameters. A textured surface with negative Ssk and high Vvc has the minimum temperature rise. Originality/value As it is too difficult to arrange sensors into heavy-load SPBs, there are few reports about the temperature characteristics. Through nine embedded thermal couples, the distribution of temperature rise on the inner ring of SPBs was given in this study. The positive effect of surface texture on reducing temperature rise and friction coefficient was verified, which is beneficial for the design of heavy-load SPBs.


2020 ◽  
Vol 72 (9) ◽  
pp. 1087-1094
Author(s):  
Susan Meireles C. Dantas ◽  
Marcio G. Di Vernieri Cuppari ◽  
Vania Trombini Hernandes

Purpose This study aims to investigate the friction coefficient of Al2O3–NbC nanocomposite obtained by spark plasma sintering sliding against a steel ball. Design/methodology/approach Tribological tests were carried out using a reciprocating nanotribometer in a ball on flat configuration with normal loads in the range from 10 to 100 mN under dry conditions. Surface changes were analyzed by confocal microscopy and 3D profilometry. Findings The values of the friction coefficient varied from 0.15 to 0.6 and are independent of the applied load. Originality/value The tribological behavior is attributed to fracture in the contact region and the effect of wear debris. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0356/


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fuying Zhang ◽  
Yuanhao Zhang

Purpose The purpose of this paper is to study the pumping efficiency of oil seals with different surface textures at different speeds, and the influence of the rotation direction of triangular texture on the sealing performance was further analyzed. Design/methodology/approach Based on the theory of elastohydrodynamic lubrication and the pumping mechanism of rotary shaft seals, establishing a numerical model of mixed lubrication in oil seal sealing area. The model is coupled with the lip surface texture parameters and the two-dimensional average Reynolds equation considering the surface roughness. Findings The results show that the application of lip surface texture technology has obvious influence on the oil film thickness, friction torque and pumping rate of oil seal. The triangular texture has the most significant effect on the increase of pump suction rate. When the rotation direction of triangular texture is 315 degrees, the pumping rate of oil seal is the largest compared with the other seven directions. Originality/value The model has a comprehensive theoretical guidance for the design of new oil seal products, which provides a certain basis for the application of surface texture technology in the field of sealing in the future. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-06-2020-0198/


2016 ◽  
Vol 68 (1) ◽  
pp. 92-98 ◽  
Author(s):  
ilker Sugozu ◽  
ibrahim mutlu ◽  
Kezban Banu Sugozu

Purpose – The purpose of this paper is to investigate use of colemanite (C) upon friction and wear performance of automotive brake lining. Brake lining production with the boron product colemanite addition and braking characterization investigated for development of non-asbestos organic (NAO) brake lining because of negative effects on human health and environmental hazard of asbestos containing linings. During the braking, brake lining is warmed up extremely due to friction, and the high temperature causes to decreasing of breaking performance. Colemanite has high melting temperature, and this makes this material valuable for brake lining. Design/methodology/approach – This study investigated the effect of colemanite (C) upon friction and wear performance of automotive brake lining. Based on a simple experimental formulation, different amounts of boron product colemanite were used and then evaluated using a friction assessment and screening test. In these specimens, half of the samples (shown with H indices) were heat treated in 4 h at 180°C temperature. Friction coefficient, wear rate and scanning electron microscope for friction surfaces were used to assess the performance of these samples. Findings – The results of test showed that colemanite can substantially improve properties of friction materials. The friction coefficient of friction materials modified with colemanite varies steadily with the change of temperature, and the wearing rate of friction materials is relatively low by using colemanite. Heat treatment-applied samples (CH) have provided a higher and stable friction coefficient. These results indicate that colemanite has ideal application effect in various friction materials. Originality/value – This paper fulfils an identified information and offers practical help to the industrial firms working with brake lining and also to the academicians working on wear of materials. Parallel results have been presented between previously reported and present study, in view of brake characteristics and wear resistance. Use of the lower cost and productive organic sources of material are the main improvement of the present study.


Author(s):  
Zhaoyun Sun ◽  
Xueli Hao ◽  
Wei Li ◽  
Ju Huyan ◽  
Hongchao Sun

To overcome the limitations of pavement skid resistance prediction using the friction coefficient, a Genetic-Algorithm-Improved Neural Network (GAI-NN) was developed in this study. First, three-dimensional (3D) point-cloud data of an asphalt pavement surface were obtained using a smart sensor (Gocator 3110). The friction coefficient of the pavement was then obtained using a pendulum friction tester. The 3D point-cloud dataset was then analyzed to recover missing data and perform denoising. In particular, these data were filled using cubic-spline interpolation. Parameters for texture characterization were defined, and methods for computing the parameters were developed. Finally, the GAI-NN model was developed via modification of the weights and thresholds. The test results indicated that using pavement surface texture 3D data, the GAI-NN was capable of predicting the pavement friction coefficient with sufficient accuracy, with an error of 12.1%.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Hao Liu ◽  
Yunfeng Yan ◽  
...  

Purpose This paper aims to focus on studying the addition of nano-tungsten disulfide (WS2) on fretting wear performance of ultra-high-molecular-weight-polyethylene (UHMWPE). Design/methodology/approach In this study, the effect of WS2 content on fretting wear performance of UHMWPE was investigated. The fretting wear performance of the UHMWPE and WS2/UHMWPE nanocomposites were evaluated on oscillating reciprocating friction and wear tester. The data of the friction coefficient and the specific wear rate were obtained. The worn surfaces of composites were observed. The transfer film and its component were analyzed. Findings With the addition of 0.5% WS2, the friction coefficient and specific wear rate increased. With the content increased to 1% and 1.5%, the friction coefficient and specific wear rate decreased. The lowest friction coefficient and specific wear rate were obtained with the addition of 1.5% nano-WS2. Continuingly increasing content, the friction coefficient and wear rate increased but lower than that of pure UHMWPE. Research limitations/implications The research indicated the fretting wear performance related to the content of nano-WS2 with the incorporation of WS2 into UHMWPE. Practical implications The result may help to choose the appropriate content. Originality/value The main originality of the research is to reveal the fretting behavior of UHMWPE and WS2/UHMWPE nanocomposites. It makes us realize the nano-WS2 had an effect on the fretting wear performance of UHMWPE. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-04-2020-0151/


2019 ◽  
Vol 72 (4) ◽  
pp. 497-502
Author(s):  
Song Quan ◽  
Guo Yong ◽  
Gong Jun ◽  
Xuedong Liu ◽  
Jin Yongping ◽  
...  

Purpose This paper aims to study the frictional performance of reciprocating pair with high velocity by using hydrodynamic lubrication principle and fish scale textured piston model. Design/methodology/approach Based on the idea of function characteristic approximation and coordinate change, a mathematical representation model of imitating fish scale texture pit section is established. According to the principle of dynamic pressure lubrication of the textured fluid, a three-dimensional numerical model of flow field for fish scale texture is established without considering cavitation. Numerical analysis of the model carp scale texture unit by orthogonal experimental design and FLUENT software is carried out. Findings Effects of fish scale pit texture on friction properties for a reciprocating pair piston surface with high velocity (impact piston) are acquired. Effects of texture characterization parameters and flow rate on the surface friction performance for impact piston are found. Effects of different characteristic parameters combination of imitating fish scale texture on friction performance for impact piston surface are obtained. Originality/value The model is an effective tool to study the friction and wear of reciprocating pair with high velocity. The effects of fish scale textured piston pair supply a theory lead to design the reciprocating pair with better friction performance. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2019-0398


2019 ◽  
Vol 71 (2) ◽  
pp. 232-241 ◽  
Author(s):  
Chao Chen ◽  
Xiaojing Wang ◽  
Yifan Shen ◽  
Zhaolun Li ◽  
Jian Dong

PurposeSurface texturing has emerged in the past two decades as a viable option of surface engineering, resulting in significant improvement in wear resistance and friction coefficient. The purpose of this study is to find the appropriate surface texture to reduce vibration and improve the stability of journal bearings.Design/methodology/approachMicro-dimples, evenly distributed in a square array, were selected as the texture pattern and formed on the lower surface of bush by the laser surface texturing technique. Experiments were carried out to evaluate the effects of micro-dimples under different depths, densities and distributions.FindingsThe results are summarized in the form of shaft center orbits, waterfall illustrations and Hilbert-Huang transforms. In the entire test, it was found that an optimum geometric and distributive range of micro-dimples exists, where vibration acceleration can be decreased at least 3dB and stability can be greatly improved.Originality/valueA majority of researchers devoted to studying on static characteristics, such as friction coefficient, load carrying capacity, pressure distribution and cavitation model. Besides, the influence of surface texture on stability of rotor-journal bearing system was rarely investigated and the recent examples can be found in Refs. (Ausas et al. 2007). However, a complete study of textured journal bearings has not been undertaken in the dynamic properties. Therefore, the purpose of this paper is to experimentally investigate the comprehensive effects of density, depth and distribution of micro-dimples on bearing vibration and stability.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hekun Jia ◽  
Zeyuan Zhou ◽  
Bifeng Yin ◽  
Huiqin Zhou ◽  
Bo Xu

Purpose The purpose of this study is to investigate the influence of dimple radius, depth and density on the lubrication performance of the plunger. Design/methodology/approach A lubrication model was adopted to consider eccentricity and deformation during the working process of the plunger, and a rig test was performed to confirm the simulation results. The texture was fabricated using laser surface texturing. Findings The simulation results suggested that when dimple radius or depth increases, oil film thickness of the plunger increases before decreasing, and asperity friction displays an opposite trend. Therefore, appropriate microdimple texture could facilitate lubrication performance improvement and reduce the wear. Microdimples were then lased on the plunger surface, and a basic tribological test was conducted to validate the simulation results. The experimental results suggested that the average friction coefficient decreased from 0.18 to 0.13, a reduction of 27.8%. Social implications The introduction of microdimple on a plunger couple to reduce friction and improve lubrication is expected to provide a new approach to developing high-performance plunger couple and improve the performance of the internal combustion engine. If applied, the surface texture could help reduce friction by around 27% and cap the cost relative to the plugger friction. Originality/value The microdimple texture was introduced into the plunger couple of a vehicle to reduce the friction and improve the performance. Findings suggested that surface texture could be used in the automotive industry to improve oil efficiency and lubrication performance. Peer review The peer review history for this article is available at: http://dx.doi.org/10.1108/ILT-07-2020-0259.


Sign in / Sign up

Export Citation Format

Share Document