The pattern of technological accumulation

2017 ◽  
Vol 28 (1) ◽  
pp. 39-55 ◽  
Author(s):  
Xu Bai ◽  
Yun Liu ◽  
Gangbo Wang ◽  
Changcun Wen

Purpose The national technology accumulation pattern in three-dimensional (3D) printing technology field has not yet been studied until now. This paper is to fill this gap. To be specific, the purpose of this paper is to answer the following two questions. What is the comparative advantage of 3D printing technology among countries? What is the relative impact of 3D printing technology in the worldwide? Design/methodology/approach Patent bibliometric analysis was used for analyzing and collecting data to find critical information of 3D printing. Some indicators (RTA, FSGI, RII, CV) have been applied in analyzing the national patterns of technology accumulation in developed and developing countries by using patent statistics. Findings First, the USA, Japan, and Germany are the leading countries in 3D printing technology, while the technology accumulation patterns of these countries are rather different. Second, Israel and Italy have good performance in the fast-growing technology sub-fields. Third, although the number of patents owned by developing countries, such as China and Russia, is not few, the citations received by these patents are low. Research limitations/implications A limitation of this study is that technological development can be reflected by many indicators and patent statistic is merely one reflection form. This study just analyzes the 3D printing technology development from the perspective of patent statistic, the authors would like to continue the comprehensive analysis with the other data indicators in a future study. Originality/value The national technology accumulation pattern in 3D printing technology field has not yet been studied until now. This paper is to fill this gap.

2016 ◽  
Vol 116 (1) ◽  
pp. 122-146 ◽  
Author(s):  
Sangsung Park ◽  
Juhwan Kim ◽  
Hongchul Lee ◽  
Dongsik Jang ◽  
Sunghae Jun

Purpose – An increasing amount of attention is being paid to three-dimensional (3D) printing technology. The technology itself is based on diverse technologies such as laser beams and materials. Hence, 3D printing technology is a converging technology that produces 3D objects using a 3D printer. To become technologically competitive, many companies and nations are developing technologies for 3D printing. So to know its technological evolution is meaningful for developing 3D printing in the future. The paper aims to discuss these issues. Design/methodology/approach – To get technological competitiveness of 3D printing, the authors should know the most important and essential technology for 3D printing. An understanding of the technological evolution of 3D printing is needed to forecast its future technologies and build the R & D planning needed for 3D printing. In this paper, the authors propose a methodology to analyze the technological evolution of 3D printing. The authors analyze entire patent documents related to 3D printing to construct a technological evolution model. The authors use the statistical methods such as time series regression, association analysis based on graph theory, and principal component analysis for patent analysis of 3D printing technology. Findings – Using the proposed methodology, the authors show the technological analysis results of 3D printing and predict its future aspects. Though many and diverse technologies are developed and involved in 3D printing, the authors know only a few technologies take lead the technological evolution of 3D printing. In this paper, the authors find this evolution of technology management for 3D printing. Practical implications – If not all, most people would agree that 3D printing technology is one of the leading technologies to improve the quality of life. So, many companies have developed a number of technologies if they were related to 3D printing. But, most of them have not been considered practical. These were not effective research and development for 3D printing technology. In the study, the authors serve a methodology to select the specific technologies for practical used of 3D printing. Originality/value – Diverse predictions for 3D printing technology have been introduced in many academic and industrial fields. Most of them were made by subjective approaches depended on the knowledge and experience of the experts concerning 3D printing technology. So, they could be fluctuated according to the congregated expert groups, and be unstable for efficient R & D planning. To solve this problem, the authors study on more objective approach to predict the future state of 3D printing by analyzing the patent data of the developed results so far achieved. The contribution of this research is to take a new departure for understanding 3D printing technology using objective and quantitative methods.


2017 ◽  
Vol 23 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Qing Han ◽  
Yanguo Qin ◽  
Yun Zou ◽  
Chenyu Wang ◽  
Haotian Bai ◽  
...  

Purpose Although proximal row carpectomy, wrist arthrodesis and even total wrist arthroplasty were developed to treat wrist disease using bone and cartilage of the wrist, severe and complicated bone defects caused by ferocious trauma and bone tumors remain a stubborn problem for surgeons. Development and application of the three-dimensional (3D) printing technology may provide possible solutions. Design/methodology/approach Computed tomography (CT) data of three cases with severe bone defects caused by either trauma or bone tumor were collected and converted into three-dimensional models. Prostheses were designed individually according to the residual anatomical structure of the wrist based on the models. Both the models and prostheses were produced using 3D printing technology. A preoperative design was prepared according to the models and prostheses. Then arthroplasty was performed after preoperative simulation with printed models and prostheses. Findings The diameter of the stem and radial medullary cavity, the direction and location of the prosthesis, and other components were checked during the preoperative design and simulation process phases. The three cases with 3D printed wrist all regained reconstruction of normal anatomy and part of the function after surgery. The average increasing Cooney score rate of Cases 2 and 3 was 133.34 ± 23.57 per cent, and that of Case 1 reached 85 per cent. The average declining rate of the Gartland and Werley Score in Cases 2 and 3 was 65.21 ± 18.89 per cent, and that of Case 1 dropped to 5 per cent in the last follow-up. The scores indicated that patients experienced pain relief and function regain. In addition, the degree of patient satisfaction improved. Originality/value 3D printed wrist arthroplasty may provide an effective method for severe and complicated cases without sacrificing other bones. Personal customization can offer better anatomy and function than arthrodesis or other traditional surgical techniques.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110285
Author(s):  
Kai Xiao ◽  
Bo Xu ◽  
Lin Ding ◽  
Weiguang Yu ◽  
Lei Bao ◽  
...  

Objective To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs). Methods Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications. Results One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21–28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification). Conclusion Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 866
Author(s):  
A. R. Damanpack ◽  
André Sousa ◽  
M. Bodaghi

This paper shows how fused decomposition modeling (FDM), as a three-dimensional (3D) printing technology, can engineer lightweight porous foams with controllable density. The tactic is based on the 3D printing of Poly Lactic Acid filaments with a chemical blowing agent, as well as experiments to explore how FDM parameters can control material density. Foam porosity is investigated in terms of fabrication parameters such as printing temperature and flow rate, which affect the size of bubbles produced during the layer-by-layer fabrication process. It is experimentally shown that printing temperature and flow rate have significant effects on the bubbles’ size, micro-scale material connections, stiffness and strength. An analytical equation is introduced to accurately simulate the experimental results on flow rate, density, and mechanical properties in terms of printing temperature. Due to the absence of a similar concept, mathematical model and results in the specialized literature, this paper is likely to advance the state-of-the-art lightweight foams with controllable porosity and density fabricated by FDM 3D printing technology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yangwei Wang ◽  
Peilun Lv ◽  
Jian Li ◽  
Liying Yu ◽  
Guodong Yuan ◽  
...  

Purpose This paper aims to propose a suitable atomizing solidification chitosan (CS) gel liquid extrusion molding technology for the three dimensional (3D) printing method, and experiments verify the feasibility of this method. Design/methodology/approach This paper mainly uses experimental means, combined with theoretical research. The preparation method, solidification forming method and 3D printing method of CS gel solution were studied. The CS gel printing mechanism and printing error sources are analyzed on the basis of the CS gel ink printing results, printing performance with different ratios of components by constructing a gel print prototype, experiments evaluating the CS gel printing technology and the effects of the process parameters on the scaffold formation. Findings CS printing ink was prepared; the optimal formula was found; the 3 D printing experiment of CS was completed; the optimal printing parameters were obtained; and the reliability of the forming prototype, printing ink and gel printing process was verified, which allowed for the possibility to apply the 3 D printing technology to the manufacturing of a CS gel structure. Originality/value This study can provide theoretical and technical support for the potential application of CS 3 D printed gels in tissue engineering.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2523
Author(s):  
Yasmin Ghantous ◽  
Aysar Nashef ◽  
Aladdin Mohanna ◽  
Imad Abu-El-naaj

Defects in the oral and maxillofacial (OMF) complex may lead to functional and esthetic impairment, aspiration, speech difficulty, and reduced quality of life. Reconstruction of such defects is considered one of the most challenging procedures in head and neck surgery. Transfer of different auto-grafts is still considered as the “gold standard” of regenerative and reconstructive procedures for OMF defects. However, harvesting of these grafts can lead to many complications including donor-site morbidity, extending of surgical time, incomplete healing of the donor site and others. Three-dimensional (3D) printing technology is an innovative technique that allows the fabrication of personalized implants and scaffolds that fit the precise anatomy of an individual’s defect and, therefore, has attracted significant attention during the last few decades, especially among head and neck surgeons. Here we discuss the most relevant applications of the 3D printing technology in the oral and maxillofacial surgery field. We further show different clinical examples of patients who were treated at our institute using the 3D technology and discuss the indications, different technologies, complications, and their clinical outcomes. We demonstrate that 3D technology may provide a powerful tool used for reconstruction of various OMF defects, enabling optimal clinical results in the suitable cases.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Marcin Metlerski ◽  
Katarzyna Grocholewicz ◽  
Aleksandra Jaroń ◽  
Mariusz Lipski ◽  
Grzegorz Trybek ◽  
...  

Three-dimensional printing is a rapidly developing area of technology and manufacturing in the field of oral surgery. The aim of this study was comparison of presurgical models made by two different types of three-dimensional (3D) printing technology. Digital reference models were printed 10 times using fused deposition modelling (FDM) and digital light processing (DLP) techniques. All 3D printed models were scanned using a technical scanner. The trueness, linear measurements, and printing time were evaluated. The diagnostic models were compared with the reference models using linear and mean deviation for trueness measurements with computer software. Paired t-tests were performed to compare the two types of 3D printing technology. A P value < 0.05 was considered statistically significant. For FDM printing, all average distances between the reference points were smaller than the corresponding distances measured on the reference model. For the DLP models, the average distances in the three measurements were smaller than the original. Only one average distance measurement was greater. The mean deviation for trueness was 0.1775 mm for the FDM group and 0.0861 mm for the DLP group. Mean printing time for a single model was 517.6 minutes in FDM technology and 285.3 minutes in DLP. This study confirms that presurgical models manufactured with FDM and DLP technologies are usable in oral surgery. Our findings will facilitate clinical decision-making regarding the best 3D printing technology to use when planning a surgical procedure.


2017 ◽  
Vol 10 (2) ◽  
pp. 089-098 ◽  
Author(s):  
Mariana Matias ◽  
Horácio Zenha ◽  
Horácio Costa

Craniomaxillofacial reconstructive surgery is a challenging field. First it aims to restore primary functions and second to preserve craniofacial anatomical features like symmetry and harmony. Three-dimensional (3D) printed biomodels have been widely adopted in medical fields by providing tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. Craniomaxillofacial reconstructive surgery was one of the first areas to implement 3D printing technology in their practice. Biomodeling has been used in craniofacial reconstruction of traumatic injuries, congenital disorders, tumor removal, iatrogenic injuries (e.g., decompressive craniectomies), orthognathic surgery, and implantology. 3D printing has proven to improve and enable an optimization of preoperative planning, develop intraoperative guidance tools, reduce operative time, and significantly improve the biofunctional and the aesthetic outcome. This technology has also shown great potential in enriching the teaching of medical students and surgical residents. The aim of this review is to present the current status of 3D printing technology and its practical and innovative applications, specifically in craniomaxillofacial reconstructive surgery, illustrated with two clinical cases where the 3D printing technology was successfully used.


Author(s):  
Dzintra Kazoka ◽  
Mara Pilmane

There are various combinations of 3D printing technology and medical study process. The aim of this study was to summarize our first experience on 3D printing and outline how 3D printed models can be successfully used in Human Anatomy modern teaching and learning. In 2018 autumn semester, together with traditional methods, a three-dimensional (3D) printing has been introduced into Human Anatomy curriculum at Department of Morphology. In practical classes 39 groups of students from Faculty of Medicine 1st year together with 3 tutors used 3 different open source softwares to create anatomical models and prepared them for printing process. All anatomical models were produced using an FDM 3D printer, a Prusa i3 MK2 (Prusa Research). As methods for data collection were used our observational notes during teaching and learning, analysis of discussions between tutors and students, comments on the preparing and usability of the created and printed models. 3D printing technology offered students a powerful tool for their teaching, learning and creativity, provided possibility to show human body structures or variations. Presented data offered valuable information about current situation and these results were suitable for the further development of the Human Anatomy study course.


Sign in / Sign up

Export Citation Format

Share Document