Simulation of charring depth of timber structures when exposed to non-standard fire curves

2018 ◽  
Vol 9 (1) ◽  
pp. 63-76 ◽  
Author(s):  
Jean-Christophe Mindeguia ◽  
Guillaume Cueff ◽  
Virginie Dréan ◽  
Gildas Auguin

Purpose The fire resistance of wooden structures is commonly based on the calculation or measurement of the char layer. Designers usually estimate the char layer at the surface of a structural element by using analytical models. Some of these charring models can be found in regulations, as Eurocode 5. These analytical models, quite simple to use, are only reliable for the standard fire curve. In that case, the design of the structure is qualified as “prescriptive-based design” and can lead to oversizing the structure. Optimization of a structure can be achieved by using a “Performance-based design”, where realistic fire scenarios are taken into account by means of more or less complex models [parametric fires, two-zones models, computational fluid dynamics (CFD)]. For these so-called “natural fires”, no model for charring is available. The purpose of this paper is to present a novel methodology for applying a performance-based design to a simple timber structure. Design/methodology/approach This paper presents the development of a numerical model aiming to simulate the thermal transfer and charring in wood, under any type of thermal exposure, including non-standard fire curves. After presenting the physical background, the model is calibrated and compared to existing experimental studies on wood samples exposed to different fire curves. The model is then used as a tool for assessing the fire resistance of a common wooden structure exposed to standard and non-standard fire curves. Findings The results show that the fire resistance is obviously dependent on the choice of the thermal exposure. The reliability of the model is also discussed and the importance of taking into account particular reactions in wood during heating is underlined. Originality/value One aim of this paper is to show the opportunity to apply a performance-based approach when designing a wooden structure. It shows that more knowledge of the material behaviour under non-standard fires is still needed, especially during the decay phase.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lisa Choe ◽  
Selvarajah Ramesh ◽  
Xu Dai ◽  
Matthew Hoehler ◽  
Matthew Bundy

PurposeThe purpose of this paper is to report the first of four planned fire experiments on the 9.1 × 6.1 m steel composite floor assembly as part of the two-story steel framed building constructed at the National Fire Research Laboratory.Design/methodology/approachThe fire experiment was aimed to quantify the fire resistance and behavior of full-scale steel–concrete composite floor systems commonly built in the USA. The test floor assembly, designed and constructed for the 2-h fire resistance rating, was tested to failure under a natural gas fueled compartment fire and simultaneously applied mechanical loads.FindingsAlthough the protected steel beams and girders achieved matching or superior performance compared to the prescribed limits of temperatures and displacements used in standard fire testing, the composite slab developed a central breach approximately at a half of the specified rating period. A minimum area of the shrinkage reinforcement (60 mm2/m) currently permitted in the US construction practice may be insufficient to maintain structural integrity of a full-scale composite floor system under the 2-h standard fire exposure.Originality/valueThis work was the first-of-kind fire experiment conducted in the USA to study the full system-level structural performance of a composite floor system subjected to compartment fire using natural gas as fuel to mimic a standard fire environment.


2019 ◽  
Vol 107 ◽  
pp. 179-185 ◽  
Author(s):  
J. Schmid ◽  
D. Brandon ◽  
N. Werther ◽  
M. Klippel

2019 ◽  
Vol 10 (2) ◽  
pp. 193-232 ◽  
Author(s):  
Mustafa Mahamid ◽  
Ataollah Taghipour Anvari ◽  
Ines Torra-Bilal ◽  
Tom Brindley ◽  
Michael McNallan

Purpose The purpose of this paper is to investigate different types of fire on structural steel members with damaged fireproofing. Two types of fire scenarios are considered, ASTM E119 fire and Hydrocarbon fire. In industrial facilities such as oil refineries, certain units maybe subjected to hydrocarbon fire, and its effect might be different than standard fire. The purpose of this study is to compare both types of fire scenarios on steel beams with damaged fireproofing and determine the fire rating of the damaged beams under each fire scenario. Design/methodology/approach The study is performed using computational methods, thermal-stress finite element analysis that is validated with experimental results. The results of practical beam sizes and typical applied loads in such structures have been plotted and compared with steel beams with non-damaged fireproofing. Findings The results show significant difference in the beam fire resistance between the two fire scenarios and show the fire resistance for beam under each case. The study provides percentage reduction in fire resistance under each case for the most commonly used cases in practice under different load conditions. Originality/value Extensive literature search has been performed by the authors, and few studies were found relevant to the topic. The question this study answers comes up regularly in practice. There are no standards to codes that address this issue.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Marina Gravit ◽  
Daria Shabunina

The requirements for the fire resistance of steel structures of oil and gas facilities for transportation and production of hydrocarbons are considered (structures of tankers and offshore platforms). It is found that the requirements for the values of fire resistance of structures under hydrocarbon rather than standard fire conditions are given only for offshore stationary platforms. Experimental studies on the loss of integrity (E) and thermal insulating capacity (I) of steel bulkheads and deck with mineral wool under standard and hydrocarbon fire regimes are presented. Simulation of structure heating was performed, which showed a good correlation with the experimental results (convective heat transfer coefficients for bulkheads of class H: 50 W/m2·K; for bulkheads of class A: 25 W/m2·K). The consumption of mineral slabs and endothermic mat for the H-0 bulkhead is predicted. It is calculated that under a standard fire regime, mineral wool with a density of 80–100 kg/m2 and a thickness of 40 to 85 mm should be used; under a hydrocarbon fire regime, mineral wool with a density above 100 kg/m2 and a thickness of 60–150 mm is required. It is shown that to protect the structures of decks and bulkheads in a hydrocarbon fire regime, it is necessary to use 30–40% more thermal insulation and apply the highest density of fire-retardant material compared to the standard fire regime. Parameters of thermal conductivity and heat capacity of the applied flame retardant in the temperature range from 0 to 1000 °C were clarified.


2018 ◽  
Vol 9 (3) ◽  
pp. 222-236 ◽  
Author(s):  
Joachim Schmid ◽  
Alessandro Santomaso ◽  
Daniel Brandon ◽  
Ulf Wickström ◽  
Andrea Frangi

Purpose The purpose of this study is to investigate the influencing factors on the charring behaviour of timber, the char layer and the charring depth in non-standard fires. Design/methodology/approach This paper summarizes outcomes of tests, investigating the influences on the charring behavior of timber by varying the oxygen content and the gas velocity in the compartment. Results show that charring is depending on the fire compartment temperature, but results show further that at higher oxygen flow, char contraction was observed affecting the protective function of the char layer. Findings In particular, in the cooling phase, char contraction should be considered which may have a significant impact on performance-based design using non-standard temperature fire curves where the complete fire history including the cooling phase has to be taken into account. Originality/value Up to now, some research on non-standard fire exposed timber member has been performed, mainly based on standard fire resistance tests where boundary conditions as gas flow and oxygen content especially in the decay phase are not measured or documented. The approach presented in this paper is the first documented fire tests with timber documenting the data required.


2017 ◽  
Vol 8 (3) ◽  
pp. 324-336 ◽  
Author(s):  
Kristian Hertz ◽  
Luisa Giuliani ◽  
Lars Schiøtt Sørensen

Purpose Prefabricated extruded hollow-core slabs are preferred building components for floor structures in several countries. It is therefore important to be able to document the fire resistance of these slabs proving fulfilment of standard fire resistance requirements of 60 and 120 min found in most national building regulations. The paper aims to present a detailed analysis of the mechanisms responsible for the loss of load-bearing capacity of hollow-core slabs when exposed to fire. Design/methodology/approach Furthermore, it compares theoretical calculation and assessment according to the structural codes with data derived from a standard fire test and from a thorough examination of the comprehensive test documentation available on fire exposed hollow-core slabs. Findings Mechanisms for loss of load-bearing capacity are clarified, and evidence of the fire resistance is found. Originality value For the first time, the mechanisms responsible for loss of load-bearing capacity are identified, and test results and calculation approach are for the first time applied in accordance with each other for assessment of fire resistance of the structure.


2020 ◽  
Vol 13 (2) ◽  
pp. 398-432
Author(s):  
D. L. ARAÚJO ◽  
G. D. C. PINTO

Abstract Prestressed hollow core slabs are one of the structural systems whose use has increased the most in recent years in Brazil due to its efficiency and versatility. They can be used in many types of structural systems, such as masonry, precast concrete, cast-in-place concrete and steel structures. However, there are few analytical models to evaluate the fire behavior of hollow core slabs. In a simplified way, the fire resistance is evaluated indirectly through the minimum distance of the surface in contact with fire to the reinforcement axis. In this paper, some numerical models in finite element software were developed to analyze the variation of temperature with fire exposure time of shallow hollow core slabs, focusing on the presence of voids in the transversal section of the slab. The 500 °C isotherm method applied to 20 cm high slabs confirmed the Standard Fire Resistance obtained from the tabular method. However, when applied to shallow prestressed hollow core slabs that are 16 cm high, the 500 °C isotherm method indicated that the Standard Fire Resistance of these slabs is lower than values obtained from tabular methods.


Author(s):  
Andrii Ihnatenkо ◽  
Olena Synkovska

This article studies the stress-strain state of reinforced concrete beams with steel sheet of different thickness under exposure to nearfire temperature. The obtained data are analyzed and the conclusions of the operation of an investigated structure under thermal exposure are made. Problem. The magnitude of the thermal stresses during heating can be quite high and can cause cracks in structures or even their destruction at either low or zero operating loads. The objective is to develop a methodology for calculating the design of reinforced concrete beams to withstand high thermal power effects. Tosolve the question posed, the methodology of mathematical models was used with the help of the developed finite element schemes. Based on the results of the study, the temperature dependences were determined at different points of the cross-section of the reinforced concrete beams under standard fire conditions. The fire resistance boundaries of the beams, which are the object of the study, have been determined. Results: the article presents the original method of calculation of reinforced concrete beams at different thicknesses of steel sheet, developed in accordance with the existing methodological and regulatory framework in the EU countries; section heating curves have been built, whose analysis shows the presence of a specific "shelf", when the temperature remains constant for some time and equal to 100°C, which confirms the adequacy of the thermal conductivity model, as it can consider the phenomenon of intense evaporation of moisture from concrete pores; fire resistance on three identical beams, whose difference lies in the thickness of the steel plate, has been studied and a maximum deflection to the standard fire time curve has been built; the limits of fire resistance of the investigated beams are determined, which show the very close limits of fire resistance of beams that differ within 3 minutes. The duration and high cost of fire tests of construction the structures determine the practical value of calculation methods for assessing the fire resistance of both individual loadbearing elements and structures in general in the design of new and reconstruction of existing civil and industrial structures.


2017 ◽  
Vol 8 (3) ◽  
pp. 218-237 ◽  
Author(s):  
Puneet Kumar ◽  
Gaurav Srivastava

PurposeReinforced concrete structural frames with masonry infills (infill-frames) are commonly used for construction worldwide. While the behavior of such frames has been studied extensively in the context of earthquake loading, studies related to their fire performance are limited. Therefore, this study aims to characterize the behavior of infill-frames under fire exposure by presenting a state-of-the-art literature review of the same.Design/methodology/approachBoth experimental and computational studies have been included with a special emphasis on numerical modeling (simplified as well as advanced). The cold behavior of the infill-frame and its design requirements in case of fire exposure are first reviewed to set the context. Subsequently, the applicability of numerical modeling strategies developed for modeling cold infill-frames to simulate their behavior under fire is critically examined.FindingsThe major hurdles in developing generic numerical models for analyzing thermo-mechanical behavior of infill-frames are identified as: lack of temperature-dependent material properties, scarcity of experimental studies for validation and idealizations in coupling between thermal and structural analysis.Originality valueThis study presents one of the most popular research problems connected with practical and reliable utilization of numerical models, as a good alternative to expensive traditional furnace testing, in assessing fire resistance of infill-frames. It highlights major challenges in thermo-mechanical modeling of infill-frames and critically reviews the available approaches for modeling infill-frames subjected to fire.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Muhannad R. Alasiri ◽  
Mustafa Mahamid

Purpose Standard fire resistance curves such as ASTM E119 have been used for so long in structural fire practice. The issue with use of these curves that they do not represent real fire scenarios. As a result, the alternatives have been to either conduct experiments or find other tools to represent a real fire scenario. Therefore, the purpose of this paper is to understand the temperature effects resulted from a designed fire on steel beams and whether the standard fire curves represent a designed fire scenario. Design/methodology/approach Computational fluid dynamics (CFD) models were developed to simulate a designed fire scenario and to understand the structural responses on the beams under elevated temperatures. Consequently, the results obtained from the CFD models were compared with the results of three-dimensional (3D) non-linear finite element (FE) models developed by other researchers. The developed FE models were executed using a standard fire curve (ASTM E119). A parametric study including two case studies was conducted. Findings Results obtained from performing this study showed the importance of considering fire parameters such as fuel type and flame height during the thermal analysis compared to the standard fire curves, and this might lead to a non-conservative design as compared to the designed fire scenario. The studied cases showed that the steel beams experienced more degradation in their fire resistance at higher load levels under designed fires. Additionally, the models used the standard fire curves underestimated the temperatures at the early stages. Originality/value This paper shows results obtained by performing a comparison study of models used ASTM E119 curve and a designed fire scenario. The value of this study is to show the variability of using different fire scenarios; thus, more studies are required to see how temperature history curves can be used to represent real fire scenarios.


Sign in / Sign up

Export Citation Format

Share Document