scholarly journals New water-based flexographic ink based on new ter-polymer nano-particles as eco-friendly binders – Part II

2020 ◽  
Vol 49 (6) ◽  
pp. 473-482
Author(s):  
H. Abd El-Wahab ◽  
G.A. Meligi ◽  
M.G. Hassaan ◽  
L. Lin

Purpose The purpose of this study is to prepare, characterise and evaluate nano-emulsions of ter-polymers of various compositions as eco-friendly binders for flexographic ink industry. Design/methodology/approach Various nano-emulsions of ter-polymers were prepared based on Vinyl acetate, Vinyl Versatate, butyl acrylate, acrylic acid and acrylamide monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared, thermo-gravimetric analysis, gel permeation chromatography and transmission electron microscopy. A selection of co-polymers and ter-polymers were formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their rheological properties, pH, degree of dispersion, water-resistance and colour density. Findings It was found that the low viscosity of the prepared polymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified poly acrylate-based latex with improved physico-mechanical properties was obtained. The prepared latexes showed improved properties such as enhanced thermal stability and better water resistance. The effect of the emulsifier type on the properties of the resulting emulsion latexes and their corresponding films were investigated. Also, as the hydrophobic monomer increases, so does the colour density and increasing the binder ratio enhances the gloss values. The improving in gloss values were obtained and provide excellent adhesion properties for both the pigment particles and the base paper. Research limitations/implications The study focusses on the preparation of new water-based ter-polymer nano-particles and their use as eco-friendly binders for flexographic ink industry. Ink formulations based on other different type emulsion polymers could also be studied to assess the applicability of the ink formulation system found for other binders. Practical implications The ink formulations developed could find use in industrial-scale printing. Originality/value Eco-friendly environment and low-cost ink formulations for printing on paper substrates are novel.

2020 ◽  
Vol 49 (3) ◽  
pp. 239-248
Author(s):  
H. Abd El-Wahab ◽  
G. El-Meligi ◽  
M.G. Hassaan ◽  
A. Kazlauciunas ◽  
Long Lin

Purpose The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry. Design/methodology/approach Various nano-emulsions of copolymers were prepared using styrene (St), butyl acrylate (BuAc), acrylic acid (AA) and acrylamide (AAm) monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). A selection of copolymers was formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their viscosity, pH, degree of dispersion, water resistance and colour density. Findings It was found that the low viscosity of the prepared copolymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified polyacrylate-based latex with improved physico-mechanical properties were obtained. The prepared latexes were showed improving and enhancing in water resistance; gloss values, and the print density that ranged from 2.06 to 2.51 and the maximum gloss values (39 and 48) were also obtained. Also, these binders provide excellent adhesion properties for both the pigment particles and the base paper. Practical implications This study focuses on the preparation of new water-based copolymer nanoparticles and their use as eco-friendly binders for flexographic ink industry. Social implications The ink formulations developed could find use in industrial-scale printing. Originality/value Eco-friendly environment ink formulations for printing on paper substrates are novel.


Author(s):  
Oladapo Akinyede ◽  
Jag Sankar ◽  
Ram Mohan ◽  
Ajit Kelkar

Hybrid composites composed of particulate inclusion in the resin for fiber reinforced plastics are manufactured using the low-cost vacuum assisted resin transfer molding (VARTM) composite technology. Particulate inclusions are known to influence to some degree, the thermo-mechanical properties of resin systems and are dispersed in the resin before fabrication by this low cost processing technique. Particulates are dispersed in resin systems via ultrasonic agitation to obtain exfoliated/ intercalated particle dispersion morphology. Highly dispersible grade particulate boehmite nano-alumina with 110nm mean particle size was pre-dispersed in a low viscosity epoxy resin prior to VARTM processing. Fiber lay-up with high tow density (10K) S-glass fabric was impregnated. The flow regime of the infused modified resin and the mold setup configuration influence the percolation and filtration of the particulates in the mold lay-up. The occurrence of filtration depends on the mold lay-up configuration and flow regime. The flow pattern is varied to induce filtration by transverse percolation through the distribution media and through-fabric longitudinal flow schemes (without distribution media). Resin samples from the flow front were collected and are studied via thermo-gravimetric analysis (TGA). The dynamics of particulate flow and the potential filtration effects due to the fiber lay-up during the infusion of low viscosity resin are studied. These are based on analyzing the residual mass of the 110nm alumina particles in epoxy resin that is collected after infusion through the fiber lay-up during the manufacture of advanced hybrid composite.


2018 ◽  
Vol 47 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Xin Wang ◽  
Xiaoling Xu ◽  
Zuowan Zhou ◽  
Jihua Gou

Purpose This paper aims to exploit shape memory polymer (SMP) composite as multifunctional coatings for protecting substrates from surface wear and bacterial. The efficiency of added nano or micro-sized particles in enhancing the properties of SMP was investigated. This study also attempts to use a low-cost and effective spraying approach to fabricate the coatings. The coatings are expected to have good conformability with the substrate and deliver multi-functional performance, such as wrinkle free, wear resistance, thermal stability and antimicrobial property. Design/methodology/approach High-performance SMP composite coatings or thin films were fabricated by a home-made continuous spray-deposition system. The morphologies of the coatings were studied using the scanning electron microscope and the transmission electron microscope. The abrasion properties were evaluated by Taber Abraser test, and thermo-gravimetric analysis was carried out to investigate the thermal properties of prepared composites. The antimicrobial property was determined by the inhibition zone method using E. coli. The thermally responsive shape memory effect of the resulting composites was also characterized. Findings The morphology analysis indicated that the nanoclay was distributed on the surface of the coating which resulted in a significant improvement of the wear property. The wear resistance of the coatings with nanoclay was improved as much as 40 per cent compared with that of the control sample. The thermo-gravimetric analysis revealed that the weight loss rate of composites with nanoclay was dropped over 40 per cent. The SMP coating with zinc oxide (ZnO) showed excellent antimicrobial effect. The shape recovery effect of SMP/nanoclay and SMP/ZnO composites can be triggered by external heating and the composites can reach a full shape recovery within 60 s. Research limitations/implications This study proposed a continuous spray-deposition fabrication of SMP composite coatings, which provides a new avenue to prepare novel multi-functional coatings with low cost. Originality/value Most studies have emphasized on the sole property of SMP composites. Herein, a novel SMP composite coating which could deliver multi-functionality such as wrinkle free, wear resistance, thermal stability and antimicrobial property was proposed.


2020 ◽  
Vol 13 ◽  
Author(s):  
Inbasekaran S. ◽  
G. Thiyagarajan ◽  
Ramesh C. Panda ◽  
S. Sankar

Background:: Chrome shavings, a bioactive material, are generated from tannery as waste material. These chrome shaving can be used for the preparation of many value-added products. Objective:: One such attempt is made to use these chrome shaving wastes as a composite bio-battery to produce DC voltage, an alternate green energy source and cleaner technology. Methods:: Chrome shavings are hydrolyzed to make collagen paste and mixed with the ferrous nanoparticles of Moringa oleifera leaves and Carbon nanoparticles of Onion peels to form electrolyte paste as base. Then, the electrolyte base was added to the aluminum paste and conducting gel, and mixed well to form composite material for bio-battery. Results:: The composite material of bio-battery has been characterized using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA). Series and parallel circuit testing were done using Copper and Zinc electrodes or Carbon and Zinc electrodes as the battery terminals in the electrolyte paste. The surface area of these electrodes needs standardization from bench to pilot scale. The power generated, for an AA battery size, using a single bio-battery cell has produced a DC voltage of 1.5 V; current of 900 mA. Circuit testing on 1 ml of 80 well-cells connected in series has produced DC output of 18 V and 1100 mA whereas 48 V and 1500 mA were obtained from a series-parallel connection. Conclusion:: The glass transition temperature (Tg) of electrolyte of the bio-battery at 53°C indicates that, at this temperature, all the substances present in the bio-battery are well spread and contributing consistently to the electrolyte activity where Fe-C-Nano-Particles were able to form strong chemical bonds on the flanking hydroxyl group sites of the Collagen leading to reduced mobility of polymers and increase Tg. The results instigate promising trends for commercial exploitation of this composite for bio-battery production.


2011 ◽  
Vol 31 (2-3) ◽  
Author(s):  
Sakvai Mohammed Safiullah ◽  
Deivasigamani Thirumoolan ◽  
Kottur Anver Basha ◽  
K. Mani Govindaraju ◽  
Dhanraj Gopi ◽  
...  

Abstract The synthesis of copolymers from different feed ratios of N-(p-bromophenyl)-2- methacrylamide (PBPMA) and glycidyl methacrylate (GMA) was achieved by using free radical solution polymerization technique and characterized using FT-IR, 1H and 13C NMR spectroscopy. The thermal stability of the synthesized copolymers was studied using thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The molecular weight of the copolymer is determined by gel permeation chromatography (GPC). The corrosion performances of low nickel stainless steel specimens dip coated with different composition of copolymers were investigated in 0.5 M H2SO4 using potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) techniques. The polarization and impedance measurements showed different corrosion protection efficiency with change in composition of the copolymers. It was found that the corrosion protection properties are owing to the barrier effect of the polymer layer covered on the low nickel stainless steel surfaces. However, it is observed that the mole ratio of PBPMA and GMA plays a major role in the protective nature of the copolymer.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chenfei Zhao ◽  
Jun Wang ◽  
Lini Lu

Purpose In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy. Design/methodology/approach The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed. Findings The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions. Originality/value In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.


2019 ◽  
Vol 6 (10) ◽  
pp. 190690
Author(s):  
Zhongkan Ren ◽  
Christel Gervais ◽  
Gurpreet Singh

Ceramic matrix composite (CMC) materials have been considered a desired solution for lightweight and high-temperature applications. Simultaneously, among all different CMC reinforcements, polymer-derived ceramic (PDC) fibres have gained attention for the intrinsic thermal stability and mechanical strength with simple and cost-effective synthesis techniques. Here, carbon-rich SiOCN fibres were synthesized via hand-drawing and polymer pyrolysis of a hybrid precursor of 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasilazane (TTCSZ) and poly-acrylic acid (PAA). The type of silazane reported in this work is considered as a major precursor for SiCN; however, it is unspinnable, due to its unfavourable physical properties (low viscosity) and chemical structure (cyclic rather than linear structure). The introduction of PAA to TTCSZ to create a hybrid precursor remarkably improved the spinnability of the silazane and should be widely applicable to other unspinnable PDC pre-ceramic polymers. Investigations on the structural and compositional development of the fibres were mainly conducted via Raman spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and thermo-gravimetric analysis to determine spinnability, free carbon content, cross-linking and pyrolysis behaviour of the fibres, respectively.


2019 ◽  
Vol 48 (5) ◽  
pp. 363-374 ◽  
Author(s):  
Abdelrahman Moukhtar Naser ◽  
Hamada Abd El - Wahab ◽  
Mohamed Abd El Fattah Moustafa El Nady ◽  
Abdelzaher E.A. Mostafa ◽  
Long Lin ◽  
...  

Purpose This paper aims to investigate the best methods of utilisation of reclaimed asphalt pavements (RAP) in Egypt, to determine the effect of using 100% RAP instead of using virgin aggregates and asphalt; investigate the effect of thermoplastic elastomer polymer as asphalt modifier; and also improve the mechanical and physical characteristics and consequently improving the quality of asphalt paving, increasing service life of asphalt-paving and reducing costs. Design/methodology/approach Nano acrylate terpolymers were prepared with different % (Wt.) of and were characterised by Fourier transforms infrared (FTIR), for molecular weight (Mw), by thermo gravimetric analysis (TGA) and by transmission electron microscopy (TEM). A 4% (Wt.) of the prepared nanoemulsion terpolymer was mixed with virgin asphalt as a polymer modifier, to improve and reuse of the RAP. The modified binder was tested. The tests conducted include penetration, kinematic viscosity, softening point and specific gravity. Application of Marshall mix design types; hot mix asphalt (HMA), warm mix asphalt (WMA) and cold in place recycled (CIR). Four different mix designs used; control mix contained virgin asphalt by HMA, and the other three mix designs were polymermodified asphalt sample by HMA, WMA and CIR. Findings The research results showed that using 4 Wt.% of the prepared nanoemulsion terpolymer to produce hot mix asphalt (HMA) and warm mix asphalt (WMA) achieved higher stability compared to the control mix and cold in place recycled (CIR). Research limitations/implications This paper discusses the preparation and the characterisation of nanoemulsion and its application in RAPs to enhance and improve the RAP quality. Practical implications Nano-acrylate terpolymer can be used as a new polymer to modify asphalt to achieve the required specifications for RAP. Originality/value According to the most recent surveys, Europe produced 265 tonnes of asphalt for road applications in 2014, while the amount of available RAP was more than 50 tonnes. The use of RAP in new blended mixes reduces the need of neat asphalt, making RAP recycling economically attractive.


1985 ◽  
Vol 39 (6) ◽  
pp. 909-915 ◽  
Author(s):  
D. A. C. Compton ◽  
M. Markelov ◽  
M. L. Mittleman ◽  
J. G. Grasselli

Infrared analysis is well established as a prime method for identification of unknown samples. However, the instruments needed for recording a complete infrared spectrum have not lent themselves to mobile applications because of their inherent mechanical fragility. The design of a commercial low-cost FT-IR instrument described herein makes it particularly useful as a mobile analyzer since it is optically rugged and has sufficient on-board computer power to record high-quality spectra after being moved between locations. At the same time, it is physically small enough to be mounted on a standard lab cart along with the necessary accessories. We illustrate the use of this mobile, low-cost FT-IR for analyzing the evolved gases from Thermal Gravimetric Analysis, small pilot reactors, and the liquid eluant from Gel Permeation Chromatography.


2010 ◽  
Vol 71 ◽  
pp. 28-33 ◽  
Author(s):  
Antônio Hortêncio Munhoz Jr. ◽  
Renato Meneghetti Peres ◽  
L.H. Silveira ◽  
Leonardo Gondim Andrade e Silva ◽  
L.F. de Miranda

Nanocomposites are nanometrical material particles embedded in a specific matrix. The degree of organization of the nanostructures and their properties depend on the nature of the organic and inorganic components of the structure that can generate synergic interactions. Polymeric nanocomposites are related to a class of hybrid materials where inorganic substances of nanometric dimensions are dispersed in a polymeric matrix. In the present work, nanocomposites of nylon 6,12 with different concentrations of pseudoboehmite obtained by sol-gel process were prepared with and without the presence of octadecylamine. After preparation, the samples were irradiated with a 200 kGy radiation dose in an electron accelerator. The pseudoboehmite nano particles were characterized by X-ray diffraction, scanning electron microscopy, differential thermal analysis and thermo gravimetric analysis. The nanocomposites were characterized by thermal and mechanical tests. The addition of pseudoboehmite promoted a reduction of the melting flow during the production of the composites evidencing the interaction of pseudoboehmite with the polymeric matrix, probably modifying its crystalline structure.


Sign in / Sign up

Export Citation Format

Share Document