Development of a patients-specific 3D-printed preoperative planning and training tool, with functionalized internal surfaces, for complex oncologic cases

2019 ◽  
Vol 25 (2) ◽  
pp. 363-377 ◽  
Author(s):  
Asier Muguruza Blanco ◽  
Lucas Krauel ◽  
Felip Fenollosa Artés

Purpose The use of physical 3D models has been used in the industry for a while, fulfilling the function of prototypes in the majority of cases where the designers, engineers and manufacturers optimize their designs before taking them into production. In recent years, there has been an increasing number of reports on the use of 3D models in medicine for preoperative planning. In some highly complex surgeries, the possibility of using printed models to previously perform operations can be determining in the success of the surgery. With the aim of providing new functionalities to an anatomical 3D-printed models, in this paper, a cost-effective manufacturing process has been developed. A set of tradition of traditional techniques have been combined with 3D printing to provide a maximum geometrical freedom to the process. By the use of an electroluminescent set of functional paints, the tumours and vessels of the anatomical printed model have been highlighted, providing to this models the possibility to increase its interaction with the surgeon. These set of techniques has been used to increase the value added to the reproduced element and reducing the costs of the printed model, thus making it more accessible. Design/methodology/approach Successfully case in where the use of a low-cost 3D-printed anatomical model was used as a tool for preoperative planning for a complex oncological surgery. The said model of a 70-year-old female patient with hepatic metastases was functionalized with the aim of increasing the interaction with the surgeons. The analysis of the construction process of the anatomical model based on the 3D printing as a tool for their use in the medical field has been made, as well as its cost. Findings The use of 3D printing in the construction of anatomical models as preoperative tools is relatively new; however, the functionalization of these tools by using conductive and electroluminescent materials with the aim of increasing the interaction with it by the surgeons is a novelty. And, based on the DIY principles, it offers a geographical limitlessness, reducing its cost without losing the added value. Originality/value The process based on 3D printing presented in this paper allows to reproduce low-cost anatomical models by following a simple sequence of steps. It can be done by people with low qualification anywhere with only access to the internet and with the local costs. The interaction of these models with the surgeon based on touch and sight is much higher, adding a very significant value it, without increasing its cost.

2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


2019 ◽  
Author(s):  
Noha Hamada Mohamed ◽  
Hossam Kandil ◽  
Iman Ismail Dakhli

Abstract In dentistry, 3D printing already has diverse applicability, and holds a great deal of promise to make possible many new and exciting treatments and approaches to manufacturing dental restorations. Better availability, shorter processing time, and descending costs have resulted in the increased use of RP. Concomitantly the development of medical applications is expanding. (Zaharia et al., 2017)Many different printing technologies exist, each with their own advantages and disadvantages. Unfortunately, a common feature of the more functional and productive equipment is the high cost of the equipment, the materials, maintenance, and repair, often accompanied by a need for messy cleaning, difficult post-processing, and sometimes onerous health and safety concerns (Dawood et al., 2015)Low-cost 3D printers represent a great opportunity in the dental and medical field, as they could allow surgeons to use 3D models at a very low cost and, therefore, democratize the use of these 3D models in various indications. However, efforts should be made to establish a unified validation protocol for low-cost RP 3D printed models, including accuracy, reproducibility, and repeatability tests. Asaumi et al., suggested that dimensional changes may not affect the success of surgical applications if such changes are within a 2% variation .However, the proposed cut-off of 2% should be furthermore discussed, as the same accuracy may be not required for all types of indications. (Silva et al., 2008; Maschio et al., 2016)This aim of the present study is to evaluate the dimensional accuracy of the 3D printed mandibular models fabricated by two different additive manufacturing techniques, using highly precise one as selective laser sintering (SLS) and a low-cost one as fused filament fabrication and whether they are both comparable in terms of precision. In addition to evaluation of dimensional accuracy of linear measurements of the mandible in CBCT scans.7 mandibular models will be recruited. Radio-opaque markers of gutta-percha balls will be applied on the model to act as guide pointsTen linear measurements (5 long distances: Inter-condylar, inter-coronoidal, inter-mandibular notch, length of left ramus, length of right ramus; as well as 5 short distances: Length of the body of the mandible at midline, length of the body of the mandible in the area of last left molar, as well as that of the last right molar, the distance between the tip of right condyle to the tip of the right coronoid, as well as that of their left counterparts) will be obtained using digital calliper, to act as the reference standard later. Scanning of the model by CBCT will be next , 3D printing of the scanned image using SLS and FFF printers will be done. Recording of same linear measurment will be done on printed models. Comparison of the recorded values vs reference standard is the last step


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


2018 ◽  
Vol 45 (6) ◽  
pp. 1013-1020 ◽  
Author(s):  
Lars Brouwers ◽  
Arno Teutelink ◽  
Fiek A. J. B. van Tilborg ◽  
Mariska A. C. de Jongh ◽  
Koen W. W. Lansink ◽  
...  

2013 ◽  
Vol 3 (3) ◽  
pp. 1-9
Author(s):  
Neeraj Pandey ◽  
Gaganpreet Singh

Subject area Pricing, digital marketing, marketing management and strategic marketing. Study level/applicability The case can be used for pricing or digital marketing courses as well as marketing management courses to MBA students and/or for management development programmes. Case overview Goldfinch Mobile Solutions, a Hong-Kong based value added services (VAS) and gaming platform provider, had an exclusive tie up with Bharti Airtel in India for providing value added voice applications on an interactive voice response system (IVRS) platform. The Goldfinch flagship service is “Guru Ki Bani” which may be subscribed to by dialing the short code 58282. This “58282” service has a repository of all Sikh religion daily prayers, religious songs, teachings, stories from Guru's life and similar information that is derived from the Sikh Holy book Guru Granth Sahib Ji. As per mutual agreement between Goldfinch Mobile Solutions and Bharti Airtel, the telecom operator had the responsibility to promote Goldfinch's Guru Ki Bani service amongst its subscriber base through its below the line (BTL) promotional channels such as short messaging service (SMS), outbound calls, cell information, notification SMS after call and above the line (ATL) activities such as posters, leaflets, print, promoters, regional TV, outdoors, etc. The revenue sharing arrangement between Airtel and Golfinch was in the ratio of 75 percent and 25 percent. However, with recent changes in the policies of Telephone Regulatory Authority of India (TRAI), promotional marketing used by telecom operators has been constrained. Declining customer share, decreasing profits (after Bharti Airtel halted promotions) and increasing organization cost per customer have made MD and CEO Mr Newton Bubber think of various options including low-cost marketing initiatives besides digital marketing to promote Guru Ki Bani services. Value communication to its huge potential customer base, i.e. 184.19 million Bharti Airtel subscribers was another challenge facing Mr Newton and his marketing team at Goldfinch. Expected learning outcomes The case enables students to learn the concepts and application of value creation, effective value communication, price waterfall analysis, importance of costing parameters in pricing decisions, low-cost marketing strategies and digital marketing. Supplementary materials Teaching notes are available for educators only. Please contact your library to gain login details or email [email protected] to request teaching notes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Vavilada Satya Swamy Venkatesh ◽  
Ashish Bhalchandra Deoghare

Purpose During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges. Design/methodology/approach This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature. Findings The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc. Originality/value This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.


2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


2018 ◽  
Vol 24 (8) ◽  
pp. 1337-1346 ◽  
Author(s):  
Marzio Grasso ◽  
Lyes Azzouz ◽  
Paula Ruiz-Hincapie ◽  
Mauro Zarrelli ◽  
Guogang Ren

Purpose Recent advancements of 3D printing technology have brought forward the interest for this technique in many engineering fields. This study aims to focus on mechanical properties of the polylactic acid (PLA) feeding material under different thermal conditions for a typical fusion deposition of 3D printer system. Design/methodology/approach Specimens were tested under static loading within the range 20ºC to 60ºC considering different infill orientations. The combined effect of temperature and filament orientation is investigated in terms of constitutive material parameters and final failure mechanisms. The difference between feeding system before and post-3D printing was also assessed by mechanical test on feeding filament to verify the thermal profile during the deposition phase. Findings The results in terms of Young’s modulus, ultimate tensile strength (UTS), strain at failure (εf) and stress at failure (σf) are presented and discussed to study the influence of process settings over the final deposited material. Fracture surfaces have been investigated using an optical microscope to link the phenomenological interpretation of the failure with the micro-mechanical behaviour. Experimental results show a strong correlation between stiffness and strength with the infill orientation and the temperature values. Moreover, a relevant effect is related to deformed geometry of the filament approaching glass transition region of the polymer according to the deposition orientation. Research limitations/implications The developed method can be applied to optimise the stiffness and strength of any 3D-printed composite according to the infill orientation. Practical implications To avoid the failure of specimens outside the gauge length, a previously proposed modification to the geometry was adopted. The geometry has a parabolic profile with a curvature of 1,000 mm tangent to the middle part of the specimen. Originality/value Several authors have reported the stiffness and strength of 3D-printed parts under static and ambient temperature for different build parameters. However, there is a lack of literature on the combination of the latter with the temperature effects on the mechanical properties which this paper covers.


2018 ◽  
Vol 24 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Simone Luigi Marasso ◽  
Matteo Cocuzza ◽  
Valentina Bertana ◽  
Francesco Perrucci ◽  
Alessio Tommasi ◽  
...  

Purpose This paper aims to present a study on a commercial conductive polylactic acid (PLA) filament and its potential application in a three-dimensional (3D) printed smart cap embedding a resistive temperature sensor made of this material. The final aim of this study is to add a fundamental block to the electrical characterization of printed conductive polymers, which are promising to mimic the electrical performance of metals and semiconductors. The studied PLA filament demonstrates not only to be suitable for a simple 3D printed concept but also to show peculiar characteristics that can be exploited to fabricate freeform low-cost temperature sensors. Design/methodology/approach The first part is focused on the conductive properties of the PLA filament and its temperature dependency. After obtaining a resistance temperature characteristic of this material, the same was used to fabricate a part of a 3D printed smart cap. Findings An approach to the characterization of the 3D printed conductive polymer has been presented. The major results are related to the definition of resistance vs temperature characteristic of the material. This model was then exploited to design a temperature sensor embedded in a 3D printed smart cap. Practical implications This study demonstrates that commercial conductive PLA filaments can be suitable materials for 3D printed low-cost temperature sensors or constitutive parts of a 3D printed smart object. Originality/value The paper clearly demonstrates that a new generation of 3D printed smart objects can already be obtained using low-cost commercial materials.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramesh Chand ◽  
Vishal S. Sharma ◽  
Rajeev Trehan ◽  
Munish Kumar Gupta

Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.


Sign in / Sign up

Export Citation Format

Share Document