Evaluation of Dimensional Accuracy of 3D printed mandibular model using two different Additive Manufacturing Techniques based on Cone Beam Computed Tomography scan data (A Diagnostic Accuracy Study)

2019 ◽  
Author(s):  
Noha Hamada Mohamed ◽  
Hossam Kandil ◽  
Iman Ismail Dakhli

Abstract In dentistry, 3D printing already has diverse applicability, and holds a great deal of promise to make possible many new and exciting treatments and approaches to manufacturing dental restorations. Better availability, shorter processing time, and descending costs have resulted in the increased use of RP. Concomitantly the development of medical applications is expanding. (Zaharia et al., 2017)Many different printing technologies exist, each with their own advantages and disadvantages. Unfortunately, a common feature of the more functional and productive equipment is the high cost of the equipment, the materials, maintenance, and repair, often accompanied by a need for messy cleaning, difficult post-processing, and sometimes onerous health and safety concerns (Dawood et al., 2015)Low-cost 3D printers represent a great opportunity in the dental and medical field, as they could allow surgeons to use 3D models at a very low cost and, therefore, democratize the use of these 3D models in various indications. However, efforts should be made to establish a unified validation protocol for low-cost RP 3D printed models, including accuracy, reproducibility, and repeatability tests. Asaumi et al., suggested that dimensional changes may not affect the success of surgical applications if such changes are within a 2% variation .However, the proposed cut-off of 2% should be furthermore discussed, as the same accuracy may be not required for all types of indications. (Silva et al., 2008; Maschio et al., 2016)This aim of the present study is to evaluate the dimensional accuracy of the 3D printed mandibular models fabricated by two different additive manufacturing techniques, using highly precise one as selective laser sintering (SLS) and a low-cost one as fused filament fabrication and whether they are both comparable in terms of precision. In addition to evaluation of dimensional accuracy of linear measurements of the mandible in CBCT scans.7 mandibular models will be recruited. Radio-opaque markers of gutta-percha balls will be applied on the model to act as guide pointsTen linear measurements (5 long distances: Inter-condylar, inter-coronoidal, inter-mandibular notch, length of left ramus, length of right ramus; as well as 5 short distances: Length of the body of the mandible at midline, length of the body of the mandible in the area of last left molar, as well as that of the last right molar, the distance between the tip of right condyle to the tip of the right coronoid, as well as that of their left counterparts) will be obtained using digital calliper, to act as the reference standard later. Scanning of the model by CBCT will be next , 3D printing of the scanned image using SLS and FFF printers will be done. Recording of same linear measurment will be done on printed models. Comparison of the recorded values vs reference standard is the last step

2021 ◽  
Vol 7 ◽  
Author(s):  
Jasamine Coles-Black ◽  
Damien Bolton ◽  
Jason Chuen

Introduction: 3D printed patient-specific vascular phantoms provide superior anatomical insights for simulating complex endovascular procedures. Currently, lack of exposure to the technology poses a barrier for adoption. We offer an accessible, low-cost guide to producing vascular anatomical models using routine CT angiography, open source software packages and a variety of 3D printing technologies.Methods: Although applicable to all vascular territories, we illustrate our methodology using Abdominal Aortic Aneurysms (AAAs) due to the strong interest in this area. CT aortograms acquired as part of routine care were converted to representative patient-specific 3D models, and then printed using a variety of 3D printing technologies to assess their material suitability as aortic phantoms. Depending on the technology, phantoms cost $20–$1,000 and were produced in 12–48 h. This technique was used to generate hollow 3D printed thoracoabdominal aortas visible under fluoroscopy.Results: 3D printed AAA phantoms were a valuable addition to standard CT angiogram reconstructions in the simulation of complex cases, such as short or very angulated necks, or for positioning fenestrations in juxtarenal aneurysms. Hollow flexible models were particularly useful for device selection and in planning of fenestrated EVAR. In addition, these models have demonstrated utility other settings, such as patient education and engagement, and trainee and anatomical education. Further study is required to establish a material with optimal cost, haptic and fluoroscopic fidelity.Conclusion: We share our experiences and methodology for developing inexpensive 3D printed vascular phantoms which despite material limitations, successfully mimic the procedural challenges encountered during live endovascular surgery. As the technology continues to improve, 3D printed vascular phantoms have the potential to disrupt how endovascular procedures are planned and taught.


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Magda Silva ◽  
Isabel S. Pinho ◽  
José A. Covas ◽  
Natália M. Alves ◽  
Maria C. Paiva

AbstractAdditive manufacturing techniques established a new paradigm in the manufacture of composite materials providing a simple solution to build complex, custom designed shapes. In the biomedical field, 3D printing enabled the production of scaffolds with patient-specific requirements, controlling product architecture and microstructure, and have been proposed to regenerate a variety of tissues such as bone, cartilage, or the nervous system. Polymers reinforced with graphene or graphene derivatives have demonstrated potential interest for applications that require electrical and mechanical properties as well as enhanced cell response, presenting increasing interest for applications in the biomedical field. The present review focuses on graphene-based polymer nanocomposites developed for additive manufacturing fabrication, provides an overview of the manufacturing techniques available to reach the different biomedical applications, and summarizes relevant results obtained with 3D printed graphene/polymer scaffolds and biosensors.


Technologies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 61
Author(s):  
John Ryan C. Dizon ◽  
Ciara Catherine L. Gache ◽  
Honelly Mae S. Cascolan ◽  
Lina T. Cancino ◽  
Rigoberto C. Advincula

Additive manufacturing, commonly known as 3D printing, is an advancement over traditional formative manufacturing methods. It can increase efficiency in manufacturing operations highlighting advantages such as rapid prototyping, reduction of waste, reduction of manufacturing time and cost, and increased flexibility in a production setting. The additive manufacturing (AM) process consists of five steps: (1) preparation of 3D models for printing (designing the part/object), (2) conversion to STL file, (3) slicing and setting of 3D printing parameters, (4) actual printing, and (5) finishing/post-processing methods. Very often, the 3D printed part is sufficient by itself without further post-printing processing. However, many applications still require some forms of post-processing, especially those for industrial applications. This review focuses on the importance of different finishing/post-processing methods for 3D-printed polymers. Different 3D printing technologies and materials are considered in presenting the authors’ perspective. The advantages and disadvantages of using these methods are also discussed together with the cost and time in doing the post-processing activities. Lastly, this review also includes discussions on the enhancement of properties such as electrical, mechanical, and chemical, and other characteristics such as geometrical precision, durability, surface properties, and aesthetic value with post-printing processing. Future perspectives is also provided towards the end of this review.


2018 ◽  
Vol 24 (2) ◽  
pp. 301-312 ◽  
Author(s):  
Harish Kumar Banga ◽  
Rajendra M. Belokar ◽  
Parveen Kalra ◽  
Rajesh Kumar

Purpose Ankle–foot orthoses (AFOs) are assistive devices prescribed for a number of physical and neurological disorders affecting the mobility of the lower limbs. Additive manufacturing has been explored as an alternative process; however, it has proved to be inefficient cost-wise. This work aims to explore the possibilities of generating modular AFO elements, namely, calf, shank and footplate, with the localized composite reinforcement that aids in the optimization of the device in terms of functionality, aesthetics, rigidity and cost. Design/methodology/approach The conventional lower leg–foot orthosis configuration depends on thermoforming a polymer sheet around a mortar cast with a trademark firmness relying upon the trim-line with the inalienable plan restrictions. In manufacturing of AFO the expert, i.e. orthotist's, guidance is used. Polypropylene and polyethylene material is used in fabrication of AFO to complete all-round reported points of interest over the ordinary outlines, yet their mechanical conduct under administration conditions cannot be effectively anticipated. Findings AFOs made of polypropylene and polyethylene material are available in the market, which are used by children of age 3-5 years. With the existing AFO design, patients are facing excessive heating and sweating problems during long-term usage. After feedback from patients and orthotists (who prescribed AFO to patients), an attempt has been made to solve the problem with a new and improved AFO design of AFO by using finite element modelling and stress analysis. Also, the results indicate that the new design is similar to the actual product design. Originality/value This work introduces the low-cost 3D printing with reinforcement approach as an alternative route for the designing and manufacturing of orthotic devices with complex shapes. It is expected that new applications add-up to increase the body of knowledge about the behaviour of such products which will mix both areas, composite theory and additive manufacturing. This study investigated the fields related to 3D scanning, 3D printing and computer-aided designing for the manufacturing of a customized AFO.


2018 ◽  
Vol 55 (2) ◽  
pp. 190-191
Author(s):  
Riham Nagib ◽  
Camelia Szuhanek ◽  
Bogdan Moldoveanu ◽  
Meda Lavinia Negrutiu ◽  
Virgil Florin Duma ◽  
...  

3D printing paired with CBCT imaging technology could provide a more individualised approach to orthodontic diagnosis and tratment. The aim of the present study is to asses dimensional differences between the CBCT image and 2 types of 3D printed replicas of an impacted maxillary canine, and to determine whether this method could be used in the future development of customised orthodontic attachments. Ten replicas were printed using the STL file of the impacted canine using two types of resin- five of each, with the same printer. Linear measurements of maximum height, length and width, were made. Mean dimensional erorrs were 0.184 mm and 0.068 mm. The largest discrepancy was in lenght - 0.362 mm. More reasearch is needed, but in this study we obtained printed resin replicas that provide sufficient dimensional accuracy to be used in orthodontics.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2809
Author(s):  
Kartikeya Walia ◽  
Ahmed Khan ◽  
Philip Breedon

The robotics design process can be complex with potentially multiple design iterations. The use of 3D printing is ideal for rapid prototyping and has conventionally been utilised in concept development and for exploring different design parameters that are ultimately used to meet an intended application or routine. During the initial stage of a robot development, exploiting 3D printing can provide design freedom, customisation and sustainability and ultimately lead to direct cost benefits. Traditionally, robot specifications are selected on the basis of being able to deliver a specific task. However, a robot that can be specified by design parameters linked to a distinctive task can be developed quickly, inexpensively, and with little overall risk utilising a 3D printing process. Numerous factors are inevitably important for the design of industrial robots using polymer-based additive manufacturing. However, with an extensive range of new polymer-based additive manufacturing techniques and materials, these could provide significant benefits for future robotics design and development.


2021 ◽  
Vol 64 (6) ◽  
pp. 1921-1928
Author(s):  
Farhana Akhter ◽  
John McMaine ◽  
Alex J. McLemore ◽  
Morghan J. Hurst

HighlightsTwo different configurations of 3D printed flumes of two different materials were tested for accuracy and variability.Discharge equations were developed for 3D printed 0.122 m HS and 0.102 m Palmer-Bowlus flumes.3D flumes are accurate and show no statistical variability between prints, providing a low-cost flow measurement tool.Abstract. Flumes are specially shaped, engineered structures that have been used widely for measuring flow. Flumes are typically fabricated from aluminum or fiberglass; however, these types of flumes can be costly if purchased commercially and may lack machine precision if custom fabricated. This limits availability for widespread monitoring by smaller municipalities, engineering firms, or researchers with limited budgets. Using 3D printing technology (additive manufacturing) to produce flumes is very cost-effective, but variability between flumes and materials has not been tested, and discharge equations have not been developed for 3D printed flumes. In this study, a laboratory-scale setup was used to develop discharge equations for two types of 3D printed flumes (0.122 m HS flume and 0.102 m Palmer-Bowlus flume) made from two 3D printing materials: polylactic acid (PLA) and polyethylene terephthalate glycol modified (PETG). Variability between the same type of flume and between different materials for the same type of flume was analyzed to evaluate the consistency of the discharge equation with flumes of the same type. Eight models were developed to fit each dataset (PLA, PETG, and combined PLA and PETG) for both flume types and evaluated for goodness-of-fit and information criteria (AIC and BIC for model parsimony) to select the discharge equation for each flume type. Discharge equations were consistent for the same type of flume across each print and across different print materials. The discharge equations of 3D printed 0.122 m HS flumes and 0.102 m Palmer-Bowlus flumes are Q = 0.45624 × H2.351 and Q = 0.0001176 + 1.309 × (H - 0.0174625)2.235, respectively. The discharge equations of both flume types had R2adj values greater than 97% for the measured data of each individual flume. Both 3D printed flumes were consistent in measuring flow and are suitable for hydrologic monitoring. Keywords: 3D printing, Additive manufacturing, Discharge equation, Flume, Hydrologic monitoring.


2019 ◽  
Vol 25 (2) ◽  
pp. 363-377 ◽  
Author(s):  
Asier Muguruza Blanco ◽  
Lucas Krauel ◽  
Felip Fenollosa Artés

Purpose The use of physical 3D models has been used in the industry for a while, fulfilling the function of prototypes in the majority of cases where the designers, engineers and manufacturers optimize their designs before taking them into production. In recent years, there has been an increasing number of reports on the use of 3D models in medicine for preoperative planning. In some highly complex surgeries, the possibility of using printed models to previously perform operations can be determining in the success of the surgery. With the aim of providing new functionalities to an anatomical 3D-printed models, in this paper, a cost-effective manufacturing process has been developed. A set of tradition of traditional techniques have been combined with 3D printing to provide a maximum geometrical freedom to the process. By the use of an electroluminescent set of functional paints, the tumours and vessels of the anatomical printed model have been highlighted, providing to this models the possibility to increase its interaction with the surgeon. These set of techniques has been used to increase the value added to the reproduced element and reducing the costs of the printed model, thus making it more accessible. Design/methodology/approach Successfully case in where the use of a low-cost 3D-printed anatomical model was used as a tool for preoperative planning for a complex oncological surgery. The said model of a 70-year-old female patient with hepatic metastases was functionalized with the aim of increasing the interaction with the surgeons. The analysis of the construction process of the anatomical model based on the 3D printing as a tool for their use in the medical field has been made, as well as its cost. Findings The use of 3D printing in the construction of anatomical models as preoperative tools is relatively new; however, the functionalization of these tools by using conductive and electroluminescent materials with the aim of increasing the interaction with it by the surgeons is a novelty. And, based on the DIY principles, it offers a geographical limitlessness, reducing its cost without losing the added value. Originality/value The process based on 3D printing presented in this paper allows to reproduce low-cost anatomical models by following a simple sequence of steps. It can be done by people with low qualification anywhere with only access to the internet and with the local costs. The interaction of these models with the surgeon based on touch and sight is much higher, adding a very significant value it, without increasing its cost.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


Sign in / Sign up

Export Citation Format

Share Document