Prediction of SLS parts properties using reprocessing powder

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana C. Lopes ◽  
Álvaro M. Sampaio ◽  
Cátia S. Silva ◽  
António J. Pontes

Purpose Owing to the operating principle of powder bed fusion processes, selective laser sintering (SLS) requires effective management of the mixture ratio of processed material previously exposed to the high temperatures of processing with new virgin material. Therefore, this paper aims to fully understand the effect that the successive reprocessing has in the powder material and to evaluate its influence on the properties of SLS parts produced at different building orientations. Design/methodology/approach Polyamide 12 material with 0%, 30% and 50% of virgin powder and parts produced from them were studied through five consecutive building cycles and their mass, mechanical, thermal and microstructural properties were evaluated. Then, the experimental data was used to validate a theoretical algorithm of prediction capable to define the minimum amount of virgin powder to be added on the processed material to produce parts without significant loss of properties. Findings Material degradation during SLS influences the mass and mechanical properties of the parts, exhibiting an exponential decay property loss until 50% of the initial values. The theoretical algorithms of reprocessing proved the appropriateness to use a mixture of 30% of virgin with 70% of processed material for the most common purposes. Practical implications This paper validates a methodology to define the minimum amount of virgin material capable to fulfil the operational specifications of SLS parts as a function of the number of building cycles, depending on the requirements of the final application. Originality/value The use of theoretical models of prediction allows to describe the degradation effects of SLS materials during the sintering, ensuring the sustainable management of the processed powder and the economic viability of the process.

2018 ◽  
Vol 24 (5) ◽  
pp. 813-820 ◽  
Author(s):  
Junjie Wu ◽  
Xiang Xu ◽  
Zhihao Zhao ◽  
Minjie Wang ◽  
Jie Zhang

Purpose The purpose of this paper is to investigate the effect of selective laser sintering (SLS) method on morphology and performance of polyamide 12. Design/methodology/approach Crystallization behavior is critical to the properties of semi-crystalline polymers. The crystallization condition of SLS process is much different from others. The morphology of polyamide 12 produced by SLS technology was investigated using scanning electron microscopy, polarized light microscopy, differential scanning calorimetry, X-ray diffraction and wide-angle X-ray diffraction. Findings Too low fill laser power brought about bad fusion of powders, while too high energy input resulted in bad performance due to chain scission of macromolecules. There were three types of crystal in the raw powder material, denoted as overgrowth crystal, ring-banded spherulite and normal spherulite. Originality/value In this work, SLS samples with different sintering parameters, as well as compression molding sample for the purpose of comparison, were made to study the morphology and crystal structure of sintered PA12 in detail.


2016 ◽  
Vol 22 (4) ◽  
pp. 621-629 ◽  
Author(s):  
Wei Zhu ◽  
Chunze Yan ◽  
Yunsong Shi ◽  
Shifeng Wen ◽  
Changjun Han ◽  
...  

Purpose Semi-crystalline polymers such as polyamide-12 can be used for selective laser sintering (SLS) to make near-fully dense plastic parts. At present, however, the types of semi-crystalline polymers suitable for SLS are critically limited. Therefore, the purpose of this paper is to investigate the processibility of a new kind of semi-crystalline polypropylene (PP) with low isotacticity for SLS process. Design/methodology/approach The SLS processibility of the PP powder, including particle size and shape, sintering window, degree of crystallinity and degradation temperature, was evaluated. Effects of the applied laser energy density on the surface micromorphology, density, tensile strength and thermal properties of SLS-built PP specimens were studied. Findings The results show that the PP powder has a nearly spherical shape, smooth surfaces, an appropriate average particle size of 63.6 μm, a broad sintering window of 21 oC and low crystalline degree of 30.4 per cent comparable to that of polyamide-12, a high degradation temperature of 381.8°C and low part bed temperature of 105°C, indicating a very good SLS processibility. The density and the tensile strength first increase with increasing laser energy density until they reach the maximum values of 0.831 g/cm3 and 19.9 MPa, respectively, at the laser energy density of 0.0458 J/mm2, and then decrease when the applied laser energy density continue to increase owing to the degradation of PP powders. The complex PP components have been manufactured by SLS using the optimum parameters, which are strong enough to be directly used as functional parts. Originality/value This paper provides a new knowledge for this field that low-isotacticity PPs exhibit good SLS processibility, therefore increasing material types and broadening the application of SLS technology.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alicia Salazar ◽  
Alberto Jesús Cano Aragón ◽  
Jesús Rodríguez

Purpose Polyamide 12 (PA12) processed by the additive manufacturing technique of selective laser sintering (SLS) is acquiring a leading role in cutting-edge technological sectors pertaining to transport and biomedical among others. In many of these applications, design requirements must ensure fatigue structural integrity. One of the characteristic features of these SLS PA12 is the layer-wise structure that may influence the mechanical response. Therefore, this paper aims to assess the fatigue life behavior of PA12, focusing on the effect of the load direction with respect to the load orientation. Design/methodology/approach With the aim of analyzing the effect of the load direction with respect to the layer wise structure, fatigue tests on plain samples of SLS PA12 were carried out with the load applied parallel and perpendicular to the layer planes. The S-N stress life curves and the fatigue limit at 106 cycles were determined at room temperature and at a stress ratio of 0.1. The fracture surfaces were inspected to evaluate the damage evolution, modeled via the fracture mechanics methodology to obtain the fracture parameters. Findings The fatigue resistance was better when the load was applied parallel than when was applied perpendicularly to the layered structure. The analysis of the postmortem specimens evidenced three regions. The inspection of the fatigue macro crack growth region revealed that crazing was the mechanism responsible of nucleation and growth of damage till a macroscopic crack was generated, as well as of the consequent crack advancement. The calculated fracture parameters computed from the application of the fracture mechanics approach were similar to those obtained from standardized fracture tests, except when the stress levels were close to the yield strength. Originality/value The fatigue knowledge of polymers, and especially of polymers processed via additive manufacturing techniques, is still scarce. Therefore, the value of this investigation is not only to obtain fatigue data that could be used for structural design with SLS PA12 materials but also to advance in the knowledge of damage evolution during the fatigue process.


2019 ◽  
Vol 25 (6) ◽  
pp. 1127-1134 ◽  
Author(s):  
Yanhui Liu ◽  
Lingjie Zhu ◽  
Lei Zhou ◽  
Yongjiu Li

Purpose This paper aims to explore the influence of the reinforcement included either glass beads (GBs) or carbon fiber (CF) on the reinforced polyamide 12 (PA12) composite samples prepared by selective laser sintering (SLS). Design/methodology/approach In this paper, the microstructure and mechanical properties are investigated, and the results are compared with those obtained for non-reinforced pure PA12 samples prepared by SLS. Findings The tensile fracture surface of the non-reinforced pure PA12 sample presents strong micro-deformation within the crack origination zone between the melted PA12 matrix and the un-melted PA12 particle cores. As a result, the pure PA12 sample exhibits the greatest maximum elongation. The maximum tensile strength is obtained for the CF reinforced sample because of the strengthening effect of CF and the relatively good bonding between CFs and the PA12 matrix. The minimum tensile strength is obtained for the GB reinforced PA12 sample because of the relatively weak bonding between GBs and the PA12 matrix. Originality/value These results demonstrate that the characteristics of the interfaces between the reinforcement and the PA12 matrix have an important influence on the fracture mechanisms and mechanical properties of PA12 composites fabricated by SLS.


2020 ◽  
Vol 26 (6) ◽  
pp. 1103-1112
Author(s):  
Saleh Ahmed Aldahash ◽  
Abdelrasoul M. Gadelmoula

Purpose The cement-filled PA12 manufactured by selective laser sintering (SLS) offers desirable mechanical properties; however, these properties are dependent on several fabrication parameters. As a result, SLS prototypes may exhibit orthotropic mechanical properties unless properly oriented in build chamber. This paper aims to evaluate the effects of part build orientation, laser energy and cement content on mechanical properties of cement-filled PA12. Design/methodology/approach The test specimens were fabricated by SLS using the “DTM Sinterstation 2000” system at which the specimens were aligned along six different orientations. The scanning speed was 914mm/s, scan spacing was 0.15mm, layer thickness was 0.1mm and laser power was 4.5–8Watt. A total of 270 tensile specimens, 270 flexural specimens and 135 compression specimens were manufactured and the tensile, compression and flexural properties of fabricated specimens were evaluated. Findings The experiments revealed orientation-dependent (orthotropic) mechanical properties of SLS cement-filled PA12 and confirmed that the parts with shorter scan vectors have enhanced flexural strength as compared with longer scan vectors. The maximum deviations of ultimate tensile strength, compressive strength and flexural modulus along the six orientations were 32%, 26% and 36%, respectively. Originality/value Although part build orientation is a key fabrication parameter, very little was found in open literature with contradictory findings about its effect on mechanical properties of fabricated parts. In this work, the effects of build orientation when combined with other fabrication parameters on the properties of SLS parts were evaluated along six different orientations.


2019 ◽  
Vol 25 (5) ◽  
pp. 820-829
Author(s):  
Alberto J. Cano ◽  
Alicia Salazar ◽  
Jesús Rodríguez

Purpose Polyamide 12 (PA12) properties meet specific requirements for various applications in the automotive and aerospace industries. Bulk specimens made of PA12 and processed via the additive manufacturing technique such as selective laser sintering (SLS) present a layered structure. In case of structural applications, the fatigue performance of SLS PA12 parts is of vital importance and fatigue response studies in these type of materials are still scarce. Therefore, the purpose of this paper is to analyse the effect of the applied load orientation on the fatigue crack propagation behaviour of the layered structure of SLS PA12. Design/methodology/approach With the aim of understanding the effect of the applied load with respect to the layer orientation on the fatigue crack growth of SLS PA12, fatigue crack growth tests were carried out at two orientations. The specimens called PARA were orientated in such a way that the applied force direction belongs to the layer plane while in the group called PERP, the tensile force direction is coincident with the build direction, that is, perpendicular to the slice. Besides, special attention has been paid to the analysis of the fracture surfaces of the specimens, linking the micromechanisms of failure with the microstructure of the material. Findings The SLS PA12 specimens tested with the load applied parallel to the layered structure show a little better fatigue response than those tested at perpendicular orientation. The fracture surfaces of the specimens tested at perpendicular orientation are slightly smoother than those tested at parallel orientation. Crazes are the main micromechanism of failure with a crater size of 50 microns, which coincide with the spherulite size. This indicates that the void nucleation of the crazes takes places between lamellae inside the spherulites, and consequently, the craze growth and rupture occurs mainly in a transspherulitic mode. Originality/value PA12 parts manufactured via SLS are becoming more valuable in structural elements in the automative and aeronatical fields. In such applications, fatigue performance is vital for design. Fatigue studies are scarce in literature and even more when dealing with fatigue crack growth behaviour. The value of this work is the analysis of the fatigue crack growth response of these materials taking into account the anisotropic microstructure and to get a better understanding, this behaviour is explained taking into account the micromechanisms of failure and the microstructure of the material.


2021 ◽  
Vol 11 (4) ◽  
pp. 1-21
Author(s):  
Louise Whittaker ◽  
Hayley Pearson

Case overview The Gordon Institute of Business Science (GIBS), a South African based business school and one of the top ranked business schools in Africa, was yet again facing a crisis during the COVID-19 pandemic. Having emerged out of an extraordinary year of strict lockdown regulations and having managed a rapid shift to emergency remote teaching. GIBS had managed to maintain its academic programmes, ensuring the completion of the curriculum within the academic year whilst maintaining the exceptionally high standards and quality learning experience it was known for. As 2020 drew to a close, the academic programmes team and the students looked forward to starting the new year in a more “normal” mode of operation. GIBS closed for Christmas holiday with the intent on returning, in early 2021, in some form of face-to-face teaching. However, on the 27th of December 2020, the President of South Africa announced a return to level-3 lockdown as the second wave of infections swept through the country. Strict measures were once again enforced, significantly impacting GIBS’ possible return to campus in January 2021. Reflecting on the lessons learnt over the past year, the Executive Director: Academic Programmes, Professor Louise Whittaker, yet again faced the challenge of deciding how best to proceed given the circumstances. The case illustrates the need for effective change management through the application of Kotter’s 8 steps to transformation, whilst demonstrating the complexity of change management during a crisis. A particular focus on the importance of communication during a change management process in a crisis is illustrated through this case. Expected learning outcomes The learning outcomes are as follows: students need to understand that in a crisis, change management will be emergent and requires flexibility and adaptability; students will determine what concrete actions may be required during a change management process in a crisis; students will need to discern that theoretical models do not necessarily fit real world contexts, particularly in a crisis situation; and students will identify aspects that might be missing or inadequately formulated in standard models of change management. Complexity academic level The case is positioned at a post-graduate level and would be ideal as a teaching case for business school students on a Master of Business Administration programme, a specialised business masters programme or selected executive education programmes for general managers or senior executives. The case can be taught in a course in the following fields, namely, change management, leadership or strategy. Supplementary materials Teaching notes are available for educators only. Subject code CSS 11: Strategy.


2018 ◽  
Vol 74 (6) ◽  
pp. 1318-1338 ◽  
Author(s):  
Sarah Higgins

Purpose Digital curation addresses the technical, administrative and financial ecology required to ensure that digital information remains accessible and usable over the long term. The purpose of this paper is to trace digital curation’s disciplinary emergence and examine its position within the information sciences domain in terms of theoretical principles, using a case study of developments in the UK and the USA. Design/methodology/approach Theoretical principles regarding disciplinary development and the identity of information science as a discipline are applied to a case study of the development of digital curation in the UK and the USA to identify the maturity of digital curation and its position in the information science gamut. Findings Digital curation is identified as a mature discipline which is a sub-meta-discipline of information science. As such digital curation has reach across all disciplines and sub-disciplines of information science and has the potential to become the overarching paradigm. Practical implications These findings could influence digital curation’s development from applied discipline to profession within both its educational and professional domains. Originality/value The disciplinary development of digital curation within dominant theoretical models has not hitherto been articulated.


Sign in / Sign up

Export Citation Format

Share Document