scholarly journals Optimisation of selective laser melting for a high temperature Ni-superalloy

2015 ◽  
Vol 21 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Luke N. Carter ◽  
Khamis Essa ◽  
Moataz M Attallah

Purpose – The purpose of this paper is to optimise the selective laser melting (SLM) process parameters for CMSX486 to produce a “void free” (fully consolidated) material, whilst reducing the cracking density to a minimum providing the best possible fabricated material for further post-processing. SLM of high temperature nickel base superalloys has had limited success due to the susceptibly of the material to solidification and reheat cracking. Design/methodology/approach – Samples of CMSX486 were fabricated by SLM. Statistical design of experiments (DOE) using the response surface method was used to generate an experimental design and investigate the influence of the key process parameters (laser power, scan speed, scan spacing and island size). A stereological technique was used to quantify the internal defects within the material, providing two measured responses: cracking density and void per cent. Findings – The analysis of variance (ANOVA) was used to determine the most significant process parameters and showed that laser power, scan speed and the interaction between the two are significant parameters when considering the cracking density. Laser power, scan speed, scan spacing and the interaction between power and speed, and speed and spacing were the significant factors when considering void per cent. The optimum setting of the process parameters that lead to minimum cracking density and void per cent was obtained. It was shown that the nominal energy density can be used to identify a threshold for the elimination of large voids; however, it does not correlate well to the formation of cracks within the material. To validate the statistical approach, samples were produced using the predicted optimum parameters in an attempt to validate the response surface model. The model showed good prediction of the void per cent; however, the cracking results showed a greater deviation from the predicted value. Originality/value – This is the first ever study on SLM of CMSX486. The paper shows that provided that the process parameters are optimised, SLM has the potential to provide a low-cost route for the small batch production of high temperature aerospace components.

2020 ◽  
Vol 861 ◽  
pp. 77-82
Author(s):  
Gan Li ◽  
Cheng Guo ◽  
Wen Feng Guo ◽  
Hong Xing Lu ◽  
Lin Ju Wen ◽  
...  

This study investigated the effect of laser power (P), scan speed (v) and hatch space (h) on densification behavior, surface quality and hardness of 18Ni300 maraging steel fabricated by selective laser melting (SLM). The results indicated that the relative density of the SLMed samples has a shape increase from 73% to 97% with the laser energy density increasing from 0.5 to 2.2 J/mm2. The relative density ≥ 99% was achieved at the energy density in the range of 2.2~5.9 J/mm2. The optimum process parameters were found to be laser power of 150~200 W, scan speed of 600mm/s and hatch space of 0.105mm. In addition, it was found that the hardness increased initially with the increasing relative density up to relative density of 90% and then little relationship, but finally increase again significantly. This work provides reference for determining process parameters for SLMed maraging steel and the development of 3D printing of die steels.


2020 ◽  
Vol 26 (5) ◽  
pp. 871-879 ◽  
Author(s):  
Haihua Wu ◽  
Junfeng Li ◽  
Zhengying Wei ◽  
Pei Wei

Purpose To fabricate a selective laser melting (SLM)-processed AlSi10Mg part with almost full density and free of any apparent pores, this study aims to investigate the effect of ambient argon pressure and laser scanning speed on the particles splash during the AlSi10Mg powder bed laser melting. Design/methodology/approach Based on the discrete element method (DEM), a 3D model of random distribution of powder particles was established, and the 3D free surface of SLM forming process was dynamically tracked by the volume of fluid, where a Gaussian laser beam acts as the energy source melting the powder bed. Through the numerical simulation and process experimental research, the effect of the applied laser power and scanning speed on the operating laser melting temperature was studied. Findings The process stability has a fundamental role in the porosity formation, which is process-dependent. The effect of the processing conditions on the process stability and the resultant forming defects were clarified. Research limitations/implications The results shows that the pores were the main defects present in the SLM-processed AlSi10Mg sample, which decreases the densification level of the sample. Practical implications The optimal processing parameters (argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm ) applied during laser melting can improve the quality of selective laser melting of AlSi10Mg, Social implications It can provide a technological support for 3D printing. Originality/value Based on the analysis of the pore and balling formation mechanisms, the optimal processing parameters have been obtained, which were argon pressure of 1,000 Pa, laser power of 180 W, scan speed of 1,000 mm/s, powder layer thickness of 35 µm and hatch spacing of 50 µm. Then, a near-fully dense sample free of any apparent pores on the cross-sectional microstructure was produced by SLM, wherein the relative density of the as-built samples is larger than 97.5%.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 877
Author(s):  
Cong Ma ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

A single-layer three-dimensional model was created to simulate multi-channel scanning of AlSi25 powder in selective laser melting (SLM) by the finite element method. Thermal behaviors of laser power and scanning speed in the procedure of SLM AlSi25 powder were studied. With the increase of laser power, the maximum temperature, size and cooling rate of the molten pool increase, while the scanning speed decreases. For an expected SLM process, a perfect molten pool can be generated using process parameters of laser power of 180 W and a scanning speed of 200 mm/s. The pool is greater than the width of the scanning interval, the depth of the molten pool is close to scan powder layer thickness, the temperature of the molten pool is higher than the melting point temperature of the powder and the parameters of the width and depth are the highest. To confirm the accuracy of the simulation results of forecasting excellent process parameters, the SLM experiment of forming AlSi25 powder was carried out. The surface morphology of the printed sample is intact without holes and defects, and a satisfactory metallurgical bond between adjacent scanning channels and adjacent scanning layers was achieved. Therefore, the development of numerical simulation in this paper provides an effective method to obtain the best process parameters, which can be used as a choice to further improve SLM process parameters. In the future, metallographic technology can also be implemented to obtain the width-to-depth ratio of the SLM sample molten pool, enhancing the connection between experiment and theory.


Author(s):  
Miranda Fateri ◽  
Andreas Gebhardt ◽  
Maziar Khosravi

Selective Laser Melting (SLM) is a powder based Additive manufacturing (AM) technology which builds an object layer wise using a laser beam to melt the powder on an elevated platform. Thus far numerous studies have investigated lunar manufacturing methods and construction but little is known about applicability of SLM of lunar regolith. As most lunar construction proposals require transportation of essential materials from Earth, using an in-situ manufacturing method with indigenous material would be considerably more economical. Fabrication of parts with SLM using various metals and ceramics has already been presented. As such, the feasibility of using lunar regolith mixture to create functional parts with SLM process is investigated. Variation of process parameters such as laser power, scan speed, and scan strategies is investigated and multiple 3D objects are successfully created and presented.


2014 ◽  
Vol 20 (4) ◽  
pp. 301-310 ◽  
Author(s):  
Teodora Marcu ◽  
Cinzia Menapace ◽  
Luca Girardini ◽  
Dan Leordean ◽  
Catalin Popa

Purpose – The purpose of this paper was to obtain by means of selective laser melting and then characterize biocomposites of medical-grade Ti6Al7Nb with hydroxyapatite (2 and 5 vol.%) and without hydroxyapatite, as reference. Design/methodology/approach – Rectangular samples were manufactured with the same scanning strategy; the laser power was between 50 W and 200 W. Processed samples were analysed by means of optical microscopy, scanning electron microscopy and microhardness. Findings – The results showed that despite the very short processing times, hydroxyapatite decomposed and interacted with the base Ti6Al7Nb material. The decomposition degree was found to depend on the applied laser power. From the porosity and bulk microstructure point of view, the most appropriate materials for the purposed medical applications were Ti6Al7Nb with hydroxyapatite processed with a laser power of 50 W. Originality/value – The originality of the present work consists in the study of the behaviour and interaction of hydroxyapatite additive with the Ti6Al7Nb base powder under selective laser melting conditions, as depending on the applied laser power.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3720 ◽  
Author(s):  
Tatevik Minasyan ◽  
Sofiya Aydinyan ◽  
Ehsan Toyserkani ◽  
Irina Hussainova

The laser power bed fusion approach has been successfully employed to manufacture Mo(Si,Al)2-based composites through the selective laser melting of a MoSi2-30 wt.% AlSi10Mg mixture for high-temperature structural applications. Composites were manufactured by leveraging the in situ reaction of the components during printing at 150–300 W laser power, 500–1000 mm·s−1 laser scanning speed, and 100–134 J·mm−3 volumetric energy density. Microcomputed tomography scans indicated a negligible induced porosity throughout the specimens. The fully dense Mo(Si1-x,Alx)2-based composites, with hardness exceeding 545 HV1 and low roughness for both the top (horizontal) and side (vertical) surfaces, demonstrated that laser-based additive manufacturing can be exploited to create unique structures containing hexagonal Mo(Si0.67Al0.33)2.


2017 ◽  
Vol 23 (6) ◽  
pp. 1202-1211 ◽  
Author(s):  
Sanjay Kumar ◽  
Aleksander Czekanski

Purpose WC-Co is a well-known material for conventional tooling but is not yet commercially available for additive manufacturing. Processing it by selective laser sintering (SLS) will pave the way for its commercialization and adoption. Design/methodology/approach It is intended to optimize process parameters (laser power, hatch spacing, scan speed) by fabricating a bigger part (minimum size of 10 mm diameter and 5 mm height). Microstructural analysis, EDX and hardness testing is used to study effects of process parameters. Optimized parameter is ascertained after fabricating 49 samples in preliminary experiment, 27 samples in pre-final experiment and 9 samples in final experiment. Findings Higher laser power gives rise to cracks and depletion of cobalt while higher scan speed increases porosity. Higher hatch spacing is responsible for delamination and displacement of parts. Optimized parameters are 270 W laser power, 500 mm/s scan speed, 0.04 mm layer thickness, 0.04 mm hatch spacing (resulting in energy density of 216 J/mm3) and 200°C powder bed temperature. A part comprising of small hole of 2 mm diameter, thin cylindrical pin of 0.5 mm diameter and thin wall of 2 mm width bent up to 30° angle to the base plate is fabricated. In order to calculate laser energy density, a new equation is introduced which takes into account both beam diameter and hatch spacing unlike old equation does. In order to calculate laser energy density, a new equation is formulated which takes into account both beam diameter and hatch spacing unlike old equation does. WC was not completely melted as intended giving rise to partial melting-type binding mechanism. This justified the name SLS for process in place of SLM (Selective Laser Melting). Research limitations/implications Using all possible combination of parameters plus heating the part bed to maximum shows limitation of state-of-the-art commercial powder bed fusion machine for shaping hardmetal consisting of high amount of WC (83 wt. per cent). Practical implications The research shows that microfeatures could be fabricated using WC-Co which will herald renewed interest in investigating hardmetals using SLS for manufacturing complex hard tools, molds and wear-resistance parts. Originality/value This is the first time micro features are successfully fabricated using WC-Co without post-processing (infiltration, machining) and without the help of additional binding material (such as Cu, Ni, Fe).


Sign in / Sign up

Export Citation Format

Share Document