Effect of system compliance on weld power in ultrasonic additive manufacturing

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Gowtham Venkatraman ◽  
Adam Hehr ◽  
Leon M. Headings ◽  
Marcelo J. Dapino

Purpose Ultrasonic additive manufacturing (UAM) is a solid-state joining technology used for three-dimensional printing of metal foilstock. The electrical power input to the ultrasonic welder is a key driver of part quality in UAM, but under the same process parameters, it can vary widely for different build geometries and material combinations because of mechanical compliance in the system. This study aims to model the relationship between UAM weld power and system compliance considering the workpiece (geometry and materials) and the fixture on which the build is fabricated. Design/methodology/approach Linear elastic finite element modeling and experimental modal analysis are used to characterize the system’s mechanical compliance, and linear system dynamics theory is used to understand the relationship between weld power and compliance. In-situ measurements of the weld power are presented for various build stiffnesses to compare model predictions with experiments. Findings Weld power in UAM is found to be largely determined by the mechanical compliance of the build and insensitive to foil material strength. Originality/value This is the first research paper to develop a predictive model relating UAM weld power and the mechanical compliance of the build over a range of foil combinations. This model is used to develop a tool to determine the process settings required to achieve a consistent weld power in builds with different stiffnesses.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Damien Chaney ◽  
Julien Gardan ◽  
Julien De Freyman

Purpose The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex products by adding material in comparison to traditional manufacturing processes which remove material – for industrial marketing. Design/methodology/approach After presenting the literature on customer relationships and digital technologies in business-to-business, the study uses a “zoom-out” and “zoom-in” perspective to review the extant literature on AM and then makes study propositions for industrial marketing. Findings Through the adoption of AM technologies, the study suggests that firms can improve their level of servitization through customized products, offer more sustainable value propositions and empower their customers through the sale of digital files, which can be considered as levers to strengthen relationships with customers. Research limitations/implications This paper makes several propositions regarding the relationship implications of AM for industrial marketing that further research should test. Practical implications This paper highlights the relational benefits that adopting AM may represent for companies. Originality/value While AM which is considered as an industrial revolution has generated a wide body of research in engineering and operations and technology management sciences, its impact on industrial marketing remains understudied.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ilse Valenzuela Matus ◽  
Jorge Lino Alves ◽  
Joaquim Góis ◽  
Augusto Barata da Rocha ◽  
Rui Neto ◽  
...  

Purpose The purpose of this paper is to prove and qualify the influence of textured surface substrates morphology and chemical composition on the growth and propagation of transplanted corals. Use additive manufacturing and silicone moulds for converting three-dimensional samples into limestone mortar with white Portland cement substrates for coral growth. Design/methodology/approach Tiles samples were designed and printed with different geometries and textures inspired by nature marine environment. Commercial coral frag tiles were analysed through scanning electron microscopy (SEM) to identify the main chemical elements. Raw materials and coral species were selected. New base substrates were manufactured and deployed into a closed-circuit aquarium to monitor the coral weekly evolution process and analyse the results obtained. Findings Experimental results provided positive statistical parameters for future implementation tests, concluding that the intensity of textured surface, interfered favourably in the coralline algae biofilm growth. The chemical composition and design of the substrates were determinant factors for successful coral propagation. Recesses and cavities mimic the natural rocks aspect and promoted the presence and interaction of other species that favour the richness of the ecosystem. Originality/value Additive manufacturing provided an innovative method of production for ecology restoration areas, allowing rapid prototyping of substrates with high complexity morphologies, a critical and fundamental attribute to guarantee coral growth and Crustose Coralline Algae. The result of this study showed the feasibility of this approach using three-dimensional printing technologies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2019 ◽  
Vol 25 (2) ◽  
pp. 308-321 ◽  
Author(s):  
Arfan Majeed ◽  
Jingxiang Lv ◽  
Tao Peng

Purpose This paper aims to present an overall framework of big data-based analytics to optimize the production performance of additive manufacturing (AM) process. Design/methodology/approach Four components, namely, big data application, big data sensing and acquisition, big data processing and storage, model establishing, data mining and process optimization were presented to comprise the framework. Key technologies including the big data acquisition and integration, big data mining and knowledge sharing mechanism were developed for the big data analytics for AM. Findings The presented framework was demonstrated by an application scenario from a company of three-dimensional printing solutions. The results show that the proposed framework benefited customers, manufacturers, environment and even all aspects of manufacturing phase. Research limitations/implications This study only proposed a framework, and did not include the realization of the algorithm for data analysis, such as association, classification and clustering. Practical implications The proposed framework can be used to optimize the quality, energy consumption and production efficiency of the AM process. Originality/value This paper introduces the concept of big data in the field of AM. The proposed framework can be used to make better decisions based on the big data during manufacturing process.


2020 ◽  
Vol 26 (1) ◽  
pp. 107-121 ◽  
Author(s):  
Vladimir E. Kuznetsov ◽  
Alexey N. Solonin ◽  
Azamat Tavitov ◽  
Oleg Urzhumtsev ◽  
Anna Vakulik

Purpose This paper aims to investigate how the user-controlled parameters of the fused filament fabrication three-dimensional printing process define temperature conditions on the boundary between layers of the part being fabricated and how these conditions influence the structure and strength of the polylactic acid part. Design/methodology/approach Fracture load in a three-point bending test and calculated related stress were used as a measure. The samples were printed with the long side along the z-axis, thus, in the bend tests, the maximum stress occurred orthogonally to the layers. Temperature distribution on the sample surface during printing was monitored with a thermal imager. Sample mesostructure was analyzed using scanning electron microscopy. The influence of the extrusion temperature, the intensity of part cooling, the printing speed and the time between printing individual layers were considered. Findings It is shown that the optimization of the process parameters responsible for temperature conditions makes it possible to approximate the strength of the interlayer cohesion to the bulk material strength. Originality/value The novelty of the study consists in the generalization of the outcomes. All the parameters varied can be expressed through two factors, namely, the temperature of the previous layer and the extrusion efficiency, determining the ratio of the amount of extruded plastic to the calculated. A regression model was proposed that describes the effect of the two factors on the printed part strength. Along with interlayer bonding strength, these two factors determine the formation of the part mesostructure (the geometry of the boundaries between individual threads).


2020 ◽  
Vol 26 (6) ◽  
pp. 1145-1154 ◽  
Author(s):  
Paul Lynch ◽  
C.R. Hasbrouck ◽  
Joseph Wilck ◽  
Michael Kay ◽  
Guha Manogharan

Purpose This paper aims to investigate the current state, technological challenges, economic opportunities and future directions in the growing “indirect” hybrid manufacturing ecosystem, which integrates traditional metal casting with the production of tooling via additive manufacturing (AM) process including three-dimensional sand printing (3DSP) and printed wax patterns. Design/methodology/approach A survey was conducted among 100 participants from foundries and AM service providers across the USA to understand the current adoption of AM in metal casting as a function of engineering specifications, production demand, volume and cost metrics. In addition, current technological and logistical challenges that are encountered by the foundries are identified to gather insight into the future direction of this evolving supply chain. Findings One of the major findings from this study is that hard tooling costs (i.e. patterns/core boxes) are the greatest challenge in low volume production for foundries. Hence, AM and 3DSP offer the greatest cost-benefit for these low volume production runs as it does not require the need for hard tooling to produce much higher profit premium castings. It is evident that there are major opportunities for the casting supply chain to benefit from an advanced digital ecosystem that seamlessly integrates AM and 3DSP into foundry operations. The critical challenges for adoption of 3DSP in current foundry operations are categorized into as follows: capital cost of the equipment, which cannot be justified due to limited demand for 3DSP molds/cores by casting buyers, transportation of 3DSP molds and cores, access to 3DSP, limited knowledge of 3DSP, limitations in current design tools to integrate 3DSP design principles and long lead times to acquire 3DSP molds/cores. Practical implications Based on the findings of this study, indirect hybrid metal AM supply chains, i.e. 3DSP metal casting supply chains is proposed, as 3DSP replaces traditional mold-making in the sand casting process flow, no/limited additional costs and resources would be required for qualification and certification of the cast parts made from three-dimensional printed sand molds. Access to 3DSP resources can be addressed by establishing a robust 3DSP metal casting supply chain, which will also enable existing foundries to rapidly acquire new 3DSP-related knowledge. Originality/value This original survey from 100 small and medium enterprises including foundries and AM service providers suggests that establishing 3DSP hubs around original equipment manufacturers as a shared resource to produce molds and cores would be beneficial. This provides traditional foundries means to continue mass production of castings using existing hard tooling while integrating 3DSP for new complex low volume parts, replacement parts, legacy parts and prototyping.


2016 ◽  
Vol 33 (4) ◽  
pp. 1161-1191 ◽  
Author(s):  
Zahur Ullah ◽  
Will Coombs ◽  
C Augarde

Purpose – A variety of meshless methods have been developed in the last 20 years with an intention to solve practical engineering problems, but are limited to small academic problems due to associated high computational cost as compared to the standard finite element methods (FEM). The purpose of this paper is to develop an efficient and accurate algorithms based on meshless methods for the solution of problems involving both material and geometrical nonlinearities. Design/methodology/approach – A parallel two-dimensional linear elastic computer code is presented for a maximum entropy basis functions based meshless method. The two-dimensional algorithm is subsequently extended to three-dimensional adaptive nonlinear and three-dimensional parallel nonlinear adaptively coupled finite element, meshless method cases. The Prandtl-Reuss constitutive model is used to model elasto-plasticity and total Lagrangian formulations are used to model finite deformation. Furthermore, Zienkiewicz and Zhu and Chung and Belytschko error estimation procedure are used in the FE and meshless regions of the problem domain, respectively. The message passing interface library and open-source software packages, METIS and MUltifrontal Massively Parallel Solver are used for the high performance computation. Findings – Numerical examples are given to demonstrate the correct implementation and performance of the parallel algorithms. The agreement between the numerical and analytical results in the case of linear elastic example is excellent. For the nonlinear problems load-displacement curve are compared with the reference FEM and found in a very good agreement. As compared to the FEM, no volumetric locking was observed in the case of meshless method. Furthermore, it is shown that increasing the number of processors up to a given number improve the performance of parallel algorithms in term of simulation time, speedup and efficiency. Originality/value – Problems involving both material and geometrical nonlinearities are of practical importance in many engineering applications, e.g. geomechanics, metal forming and biomechanics. A family of parallel algorithms has been developed in this paper for these problems using adaptively coupled finite element, meshless method (based on maximum entropy basis functions) for distributed memory computer architectures.


2016 ◽  
Vol 31 (7) ◽  
pp. 1152-1166 ◽  
Author(s):  
Rita Chiesa ◽  
Stefano Toderi ◽  
Paola Dordoni ◽  
Kene Henkens ◽  
Elena Maria Fiabane ◽  
...  

Purpose The purpose of this paper is to explore the relationship between organizational age stereotypes and occupational self-efficacy. First, the authors intend to test the measurement invariance of Henkens’s (2005) age stereotypes scale across two age group, respectively, under 50 and 50 years and older. Then, the moderator role of age groups in the relationship between age stereotypes and occupational self-efficacy is investigated. Design/methodology/approach The survey involved a large sample of 4,667 Italian bank sector’s employees. Findings The results show the invariance of the three dimensional structure of organizational stereotypes towards older workers scale: productivity, reliability and adaptability. Furthermore, the moderation is confirmed: the relationship between organizational age stereotypes and occupational self-efficacy is significant only for older respondents. Research limitations/implications Future studies should aim to replicate the findings with longitudinal designs. Practical implications The study suggests the importance to emphasize the positive characteristics of older workers and to reduce the presence of negative age stereotypes in the workplace, especially in order to foster the occupational self-efficacy of older workers. Originality/value The findings are especially relevant in view of the lack of evidence about the relationship between age stereotypes and occupational self-efficacy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
André Luiz Luiz Jardini ◽  
Éder Sócrates Sócrates Najar Lopes ◽  
Laís Pellizzer Gabriel ◽  
Davi Calderoni ◽  
Rubens Maciel Filho ◽  
...  

Purpose This study aims to assess the design, manufacturing and surgical implantation of three-dimensional (3D) customized implants, including surgical preoperative planning, surgery and postoperative results, for cranioplasty along with zygomatic and orbital floor implants using additive manufacturing (AM) technics for a 23-year-old female who suffered from severe craniomaxillofacial trauma. Design/methodology/approach The skull biomodel was produced in polyamide while implants were made of a Ti-6Al-4V alloy by AM. Findings The method enabled perfectly fitting implants and anatomical conformance with the craniomaxillofacial defect, providing complete healing for the patient. Surgical planning using a customized 3D polyamide biomodel was effective. This proved to be a powerful tool for medical planning and manufacturing of customized implants, as complete healing and good craniofacial aesthetic results were observed. Originality/value Satisfactory surgical procedures, regarding surgery time reduction and good craniofacial aesthetic results, were achieved. Furthermore, the 3D titanium customized implants represented a favorable alternate for the repair of craniomaxillofacial defects.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Donatien Mottin ◽  
Tsaihsing Martin Ho ◽  
Peichun Amy Tsai

Purpose Monodisperse microfluidic emulsions – droplets in another immiscible liquid – are beneficial to various technological applications in analytical chemistry, material and chemical engineering, biology and medicine. Upscaling the mass production of micron-sized monodisperse emulsions, however, has been a challenge because of the complexity and technical difficulty of fabricating or upscaling three-dimensional (3 D) microfluidic structures on a chip. Therefore, the authors develop a fluid dynamical design that uses a standard and straightforward 3 D printer for the mass production of monodisperse droplets. Design/methodology/approach The authors combine additive manufacturing, fluid dynamical design and suitable surface treatment to create an easy-to-fabricate device for the upscaling production of monodisperse emulsions. Considering hydrodynamic networks and associated flow resistance, the authors adapt microfluidic flow-focusing junctions to produce (water-in-oil) emulsions in parallel in one integrated fluidic device, under suitable flow rates and channel sizes. Findings The device consists of 32 droplet-makers in parallel and is capable of mass-producing 14 L/day of monodisperse emulsions. This convenient method can produce 50,000 millimetric droplets per hour. Finally, the authors extend the current 3 D printed fluidics with the generated emulsions to synthesize magnetic microspheres. Originality/value Combining additive manufacturing and hydrodynamical concepts and designs, the authors experimentally demonstrate a facile method of upscaling the production of useful monodisperse emulsions. The design and approach will be beneficial for mass productions of smart and functional microfluidic materials useful in a myriad of applications.


Sign in / Sign up

Export Citation Format

Share Document