Optimizing laser triangulation displacement sensor of 3D positioning and posture using COA Based BPNN

Sensor Review ◽  
2020 ◽  
Vol 40 (1) ◽  
pp. 112-120
Author(s):  
Yassine Selami ◽  
Na Lv ◽  
Wei Tao ◽  
Hongwei Yang ◽  
Hui Zhao

Purpose The purpose of this paper is to propose cuckoo optimization algorithm (COA)-based back propagation neural network (BPNN) to reduce the effect of the nonlinearities presented in laser triangulation displacement sensors. The 3D positioning and posture sensor allows access to the third dimension through depth measurement; the performance of the sensor varies according to the level of nonlinearities presented in the system, which leads to inaccuracies in measurement. Design/methodology/approach While applying optimization approach, the mathematical model and the relationship between the key parameters in the laser triangulation ranging and the indexes of the measuring system were analyzed. Findings Based on the performance of the parametric optimization method, the measurement repeatability reached 0.5 µm with an STD value within 0.17 µm, an expanded uncertainty of measurement was within 5 µm, the angle error variation of the object’s rotational plane was within 0.031 degrees and nonlinearity was recorded within 0.006 per cent in a full scale. The proposed approach reduced the effect of the nonlinearity presented in the sensor. Thus, the accuracy and speed of the sensor were greatly increased. The specifications of the optimized sensor meet the requirements for high-accuracy devices and allow wide range of industrial application. Originality/value In this paper, COA-based BPNN is proposed for laser triangulation displacement sensor optimization, on the basis of the mathematical model, clarifying the working space and working angle on the measurement system.

Author(s):  
Chenyu Zhou ◽  
Liangyao Yu ◽  
Yong Li ◽  
Jian Song

Accurate estimation of sideslip angle is essential for vehicle stability control. For commercial vehicles, the estimation of sideslip angle is challenging due to severe load transfer and tire nonlinearity. This paper presents a robust sideslip angle observer of commercial vehicles based on identification of tire cornering stiffness. Since tire cornering stiffness of commercial vehicles is greatly affected by tire force and road adhesion coefficient, it cannot be treated as a constant. To estimate the cornering stiffness in real time, the neural network model constructed by Levenberg-Marquardt backpropagation (LMBP) algorithm is employed. LMBP is a fast convergent supervised learning algorithm, which combines the steepest descent method and gauss-newton method, and is widely used in system parameter estimation. LMBP does not rely on the mathematical model of the actual system when building the neural network. Therefore, when the mathematical model is difficult to establish, LMBP can play a very good role. Considering the complexity of tire modeling, this study adopted LMBP algorithm to estimate tire cornering stiffness, which have simplified the tire model and improved the estimation accuracy. Combined with neural network, A time-varying Kalman filter (TVKF) is designed to observe the sideslip angle of commercial vehicles. To validate the feasibility of the proposed estimation algorithm, multiple driving maneuvers under different road surface friction have been carried out. The test results show that the proposed method has better accuracy than the existing algorithm, and it’s robust over a wide range of driving conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shijie Dai ◽  
Shining Li ◽  
Wenbin Ji ◽  
Zhenlin Sun ◽  
Yufeng Zhao

Purpose This study aims to realize the constant force grinding of automobile wheel hub. Design/methodology/approach A force control strategy of backstepping + proportion integration differentiation (PID) is proposed. The grinding end effector is installed on the flange of the robot. The robot controls the position and posture of the grinding end actuator and the grinding end actuator controls the grinding force output. First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. Finally, the feasibility of the proposed method is verified by simulation and experiment. Findings The simulation and experimental results show that the backstepping + PID strategy can track the expected force quickly, and improve the dynamic response performance of the system and the quality of grinding and polishing of automobile wheel hub. Research limitations/implications The mathematical model is based on the pneumatic system and ideal gas, and ignores the influence of friction in the working process of the cylinder, so the mathematical model proposed in this study has certain limitations. A new control strategy is proposed, which is not only used to control the grinding force of automobile wheels, but also promotes the development of industrial control. Social implications The automatic constant force grinding of automobile wheel hub is realized, and the manpower is liberated. Originality/value First, the modeling and analysis of the grinding end effector are carried out, and then the backstepping + PID method is adopted to control the grinding end effector to track the expected grinding force. The nonlinear model of the system is controlled by backstepping method, and in the process, the linear system composed of errors is obtained, and then the linear system is controlled by PID to realize the combination of backstepping and PID control.


Author(s):  
Debraj Sarkar ◽  
Debabrata Roy ◽  
Amalendu Bikash Choudhury ◽  
Sotoshi Yamada

Purpose A saturated iron core superconducting fault current limiter (SISFCL) has an important role to play in the present-day power system, providing effective protection against electrical faults and thus ensuring an uninterrupted supply of electricity to the consumers. Previous mathematical models developed to describe the SISFCL use a simple flux density-magnetic field intensity curve representing the ferromagnetic core. As the magnetic state of the core affects the efficient working of the device, this paper aims to present a novel approach in the mathematical modeling of the device with the inclusion of hysteresis. Design/methodology/approach The Jiles–Atherton’s hysteresis model is utilized to develop the mathematical model of the limiter. The model is numerically solved using MATLAB. To support the validity of model, finite element model (FEM) with similar specifications was simulated. Findings Response of the limiter based on the developed mathematical model is in close agreement with the FEM simulations. To illustrate the effect of the hysteresis, the responses are compared by using three different hysteresis characteristics. Harmonic analysis is performed and comparison is carried out utilizing fast Fourier transform and continuous wavelet transform. It is observed that the core with narrower hysteresis characteristic not only produces a better current suppression but also creates a higher voltage drop across the DC source. It also injects more harmonics in the system under fault condition. Originality/value Inclusion of hysteresis in the mathematical model presents a more realistic approach in the transient analysis of the device. The paper provides an essential insight into the effect of the core hysteresis characteristic on the device performance.


2011 ◽  
Vol 130-134 ◽  
pp. 1560-1563
Author(s):  
Long Jiang Zheng ◽  
Xue Li ◽  
Ling Ling Qin ◽  
Hong Bin Chen ◽  
Xue Gao ◽  
...  

At present,large scale and space coordinates measuring system with wide-range and high-precision has been widely used in modern manufacturing industry. In this paper, large scale measuring method based on leapfrog principle of flexible three coordinate measuring machine is described. The mathematical model of coordinate transformation is built and the general coordinate transformation formula after number of times leapfrogging is derived. The best positioning and each step of leapfrog are given.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


Author(s):  
Jiqing Chen ◽  
Shaorong Xie ◽  
Jun Luo ◽  
Hengyu Li

Purpose – The purpose of this paper was to solve the shortage of carrying energy in probing robot and make full use of wind resources in the Antarctic expedition by designing a four-wheel land-yacht. Land-yacht is a new kind of mobile robot powered by the wind using a sail. The mathematical model and trajectory of the land-yacht are presented in this paper. Design/methodology/approach – The mechanism analysis method and experimental modeling method are used to establish a dual-input and dual-output mathematical model for the motion of land-yacht. First, the land-yacht’s model structure is obtained by using mechanism analysis. Then, the models of steering gear, servomotors and force of wing sail are analyzed and validated. Finally, the motion of land-yacht is simulated according to the mathematical model. Findings – The mathematical model is used to analyze linear motion and steering motion. Compared with the simulation results and the actual experimental tests, the feasibility and reliability of the proposed land-yacht modeling are verified. It can travel according to the given signal. Practical implications – This land-yacht can be used in the Antarctic, outer planet or for harsh environment exploration. Originality/value – A land-yacht is designed, and the contribution of this research is the development of a mathematical model for land-yacht robot. It provides a theoretical basis for analysis of the land-yacht’s motion.


2014 ◽  
Vol 667 ◽  
pp. 328-333 ◽  
Author(s):  
Zi Guan Zhou ◽  
Wen Jing Li ◽  
Qing Wu ◽  
Yun Di Wang ◽  
Zhu Liu ◽  
...  

Existed conductor galloping can only analyze the real-time state. There is no effective method to predict the conductor galloping state and alarm if necessary in the future. In order to solve the above problems, a new conductor galloping method based on the MEMs 3Ddynamic displacement sensing network has been proposed and realized. The MEMs dynamic displacement sensor is used to sense the distributed galloping information. The low-power wireless sensor network is deployed to transmit data back to the host quickly and realize the centralized treatment. The three-degree freedom model is built to analyze multi-dimensional displacement in the horizontal, vertical and torsional directions. Finally, the conductor galloping is predicted and early alarmed by using measured information sensed by sensors, the calculated data by mathematical model and some key parameters of future weather. The method proposed in this paper has been validated in practice. The predicted trajectory after 2 hours and the actual conductor galloping trajectory are basically identical. The deviation is less than 0.03 meters. This method realizes conductor galloping prediction. It strongly supports the operation and maintenance management of the transmission Line.


2020 ◽  
pp. 86-95 ◽  
Author(s):  
O. V. Ageikina ◽  
V. V. Vorontsov ◽  
R. R. Sufyanov

The relevance of the research processes filtration consolidation due to the place of water-saturated soils in various design solutions related to the exploration, production and transportation of hydrocarbons. It should be noted that the diversity of soils led to the emergence of a wide range of mathematical models, obtained on the basis of generalization of experimental data and various assumptions to simplify engineering calculations. The article presents the results of theoretical and experimental studies of the mathematical model of the consolidation process of a water-saturated porous medium. This model is based on simplifying assumptions that are different from those adopted in well-known solutions. A fundamental approach to the formation of the model was developed on the basis of the kinetic representations of chemical reactions used in solving the environmental problems of epoxidation reactions of olefins. We determined the parameters of the mathematical model of the consolidation process of the saturated porous medium of clayey soil and confirmed its adequacy by the research results. In addition, we established the parameters of the field of non-equilibrium filtration, reducing the nonexistent ability of water-saturated soils.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Salman Ahmed Shaikh

Purpose This study aims to propose a hybrid microfinance model that integrates various Islamic commercial and social finance institutions through Fintech for efficient and impactful results. The microfinance model caters to the financial and social intermediation needs through a set of financial services and non-financial support. Design/methodology/approach The study uses both a mathematical model and an empirical estimation using micro panel data to establish the core problem in microfinance operations. Conclusions from the mathematical model and estimated results in the empirical analysis are used to suggest an institutional design which embeds technology in the delivery of Islamic microfinance in an integrated structure. For screening and incentive conditions, the study gives illustration through numerical examples. Findings The mathematical model highlights the need for financial sustainability, outreach, scale and complementariness of non-financial factors such as commitment, repayment incentives and skills enhancement multiplier. In light of this, the proposed Islamic microfinance model is outlined to create synergies by integrating a diversity of funding sources through social savings and impact investments. The programme also blends financial services with non-financial support to ensure engagement and commitment on a long-term basis. It uses Fintech in various demand and supply-side operations to show how technology embeddedness can help in achieving cost efficiencies and extend outreach. Originality/value It is the first study in integrated institutional design in Islamic microfinance literature that embeds Fintech in both demand side and supply side operations comprehensively. The proposed model is conducive for enhancing outreach, scale and impact in the Islamic microfinancial services.


2020 ◽  
Vol 10 (4) ◽  
pp. 555-572
Author(s):  
Rajali Maharjan ◽  
Yashaswi Shrestha ◽  
Biplob Rakhal ◽  
Saurav Suman ◽  
Jurgen Hulst ◽  
...  

PurposeThe purpose of this study is to develop a methodology which amalgamates quantitative and qualitative approaches to determine the best placement of mobile logistics hubs (MLH) to be established in different parts of Nepal as a part of real-life project, “Augmentation of National and Local-Level Emergency Logistics Preparedness in Nepal” (2017–2020), implemented by the World Food Programme in cooperation with the Government of Nepal.Design/methodology/approachThe study develops a methodology using a combination of a modified version of the maximal covering location problem (MCLP) and focus group discussion. The MCLP model is used to determine the optimal number and spatial location of MLHs, and focus group discussion is used to identify the five first-priority strategic MLH locations using expert knowledge.FindingsThe authors identify the five first-priority locations for establishing MLHs using an amalgamation of quantitative approach (mathematical model) and qualitative approach (focus group discussion). By amalgamating mathematical model with expert knowledge, findings acceptable to a wide range of stakeholders are obtained. The focus group discussion helps to pinpoint the location of MLHs to city-level granularity which is otherwise impossible with data available on hand.Research limitations/implicationsAlthough multiple experts’ judgements were obtained via focus group discussion, subjectivity and possible bias is inevitable. Overall, the quantitative results of the study are purely based on the data available during the study period; therefore, having updated data could possibly improve the quality of the results.Originality/valueThis study is the first of its kind that uses an amalgamation of mathematical model and expert knowledge to determine the strategic locations of MLHs and has been successful to an extent that the selected locations have been vetted by the government of Nepal for establishing MLHs and are undergoing implementation in real life. This study also considers multiple disaster scenarios and employs the concepts of human development, disaster risk and transportation accessibility to reflect Nepal's socioeconomic, geo-climatic and topographical features.


Sign in / Sign up

Export Citation Format

Share Document