Research on optimization sparse method for capacitive micromachined ultrasonic transducer array: heuristic algorithm

Sensor Review ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tian Zhang ◽  
Wendong Zhang ◽  
XingLing Shao ◽  
Yang Wu

Purpose Because of the small size and high integration of capacitive micromachined ultrasonic transducer (CMUT) component, it can be made into large-scale array, but this lead to high hardware complexity, so the purpose of this paper is to use less elements to achieve better imaging results. In this research, an optimized sparse array is studied, which can suppress the side lobe and reduce the imaging artifacts compared with the equispaced sparse array with the same number of elements. Design/methodology/approach Genetic algorithm is used to sparse the CMUT linear array, and Kaiser window apodization is added to reduce imaging artifacts, the beam pattern and peak-to-side lobe ratio are calculated, point targets imaging comparisons are performed. Furthermore, a 256-elements CMUT linear array is used to carry out the imaging experiment of embedded mass and forearm blood vessel, and the imaging results are compared quantitatively. Findings Through the imaging comparison of embedded mass and forearm blood vessel, the feasibility of optimized sparse array of CMUT is verified, and the purpose of reducing the hardware complexity is achieved. Originality/value This research provides a basis for the large-scale CMUT array to reduce the hardware complexity and the amount of calculation. At present, the CMUT array has been used in medical ultrasound imaging and has huge market potential.

Sensor Review ◽  
2016 ◽  
Vol 36 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Rui Zhang ◽  
Wendong Zhang ◽  
Changde He ◽  
Jinlong Song ◽  
Linfeng Mu ◽  
...  

Purpose – The purpose of this paper was to develop a novel capacitive micromachined ultrasonic transducer (CMUT) reception and transmission linear array for underwater imaging at 400 kHz. Compared with traditional CMUTs, the developed transducer array offers higher electromechanical coupling coefficient and higher directivity performance. Design/methodology/approach – The configuration of the newly developed CMUT reception and transmission array was determined by the authors’ previous research into new element structures with patterned top electrodes and into directivity simulation analysis. Using the Si-Silicon on insulator (Si-SOI) bonding technique and the principle of acoustic impedance matching, the CMUT array was fabricated and packaged. In addition, underwater imaging system design and testing based on the packaged CMUT 1 × 16 array were completed. Findings – The simulation results showed that the optimized CMUT array configuration was selected. Furthermore, the designed configuration of the CMUT 1 × 16 linear array was good enough to guarantee high angular resolution. The underwater experiments were conducted to demonstrate that this CMUT array can be of great benefit in imaging applications. Practical implications – Based on our research, the CMUT linear array has good directivity and good impedance matching with water and can be used for obstacle avoidance, distance measurement and imaging underwater. Originality/value – This research provides a basis for CMUT directivity theory and array design. CMUT array presented in this paper has good directivity and has been applied in the underwater imaging, resulting in a huge market potential in underwater detection systems.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 684
Author(s):  
Tian Zhang ◽  
Wendong Zhang ◽  
Xingling Shao ◽  
Yuhua Yang ◽  
Zhihao Wang ◽  
...  

Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). CMUT elements are easily made into a high-density array, which will increase the hardware complexity. In order to reduce the number of active channels, this paper studies the grating lobes generated by CMUT periodic sparse array (PSA) pairs. Through the design of active element positions in the transmitting and receiving processes, the simulation results of effective aperture and beam patterns show that the common grating lobes (CGLs) generated by the transmit and receive array are eliminated. On the basis of point targets imaging, a CMUT linear array with 256 elements is used to carry out the PSA pairs experiment. Under the same sparse factor (SF), the optimal sparse array configuration can be selected to reduce the imaging artifacts. This conclusion is of great significance for the application of CMUT in three-dimensional ultrasound imaging.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Armando Arce ◽  
Marco Cardenas-Juarez ◽  
Ulises Pineda-Rico ◽  
David H. Covarrubias ◽  
Enrique Stevens-Navarro

This paper proposes an alternative and innovative way to design a simpler beamforming network (BFN) based on balancing alternated power combiners and dividers, to feed a nonuniformly spaced linear array with Gaussian amplitude and coherent (in-phase) signals. Thus, a two-beam design configuration of the feeding network for a nonuniform array with beam steering capability is proposed and analyzed. The nonuniform aperture and the complex inputs of the feeding network are optimized by means of a differential evolution algorithm. In addition, a comparative analysis between a uniform and nonuniform linear array with the proposed feeding network is performed. Simulation results show the advantages and effectiveness of the proposed feeding network exploiting the nonuniformity of the antenna elements, in terms of side lobe level and directivity. Furthermore, research results show an inherent reduction in hardware complexity of the network.


Sensor Review ◽  
2019 ◽  
Vol 40 (2) ◽  
pp. 237-246
Author(s):  
Hongliang Wang ◽  
Xiangjun Wang ◽  
Changde He ◽  
Chenyang Xue

Purpose As a new type of ultrasonic transducer with significant advantages, capacitive micromachined ultrasonic transducer (CMUT) has good application prospect. The reception characteristic of the CMUT is one of the important factors determining the application effect. This paper aims to study the reception characteristics of CMUT. Design/methodology/approach In this paper, the state equation is deduced and the analysis model is established in SIMULINK environment based on the lumped parameter system model of the CMUT cell. Based on this analysis model, the influencing factors of CMUT reception characteristics are studied and investigated, and the time-domain and frequency-domain characteristics are investigated in detail. Findings The analysis results show that parameters directly affect the reception characteristics of the CMUT, such as direct current (DC) bias voltage, input sound pressure amplitude and frequency. At the same time, the measurement system is built and the reception characteristics are verified. Originality/value This paper provides an effective method for rapid analyzing the reception characteristics of CMUT. These results provide an important theoretical basis and reference for further optimization of CMUT structure design, and lay a good foundation for the practical application measurement.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Reza Kazemi ◽  
Mohsen Fallah ◽  
Bijan Abbasi ◽  
Seyyed Hossein MohseniArmaki

Purpose The purpose of this study is to achieve the low-cost, light-weight and compact antenna array with wide bandwidth and low side lobe levels for synthetic aperture radar (SAR) applications in Ku frequency band. Design/methodology/approach A compact design of a rectangular microstrip patch antenna array using multilayered dielectric structure is presented in Ku-band for advanced broadband SAR systems. In this design, stepped pins are used to connect the microstrip feed lines to the radiating patches. Findings The simulation and fabrication results of the multilayered antenna and a 1×16-element linear array of the antenna with Taylor amplitude distribution in the feeding network are presented. The antenna element has a 10-dB impedance bandwidth of more than 26%, and the linear array shows reduction in bandwidth percentage (about 15.4%). Thanks to Taylor amplitude tapering, the side lobe level (SLL) of the array is lower than −24 dB. The maximum measured gains of the antenna element and the linear array are 7 and 19.2 dBi at the center frequency, respectively. Originality/value In the communication systems, a high gain narrow beamwidth radiation pattern achieved by an array of multiple antenna elements with optimized spacing is a solution to overcome the path loss, atmospheric loss, polarization loss, etc. Also, wideband characteristics and compact size are desirable in satellite and SAR systems. This paper provides the combination of these features by microstrip structures.


Author(s):  
Yuanyu Yu ◽  
Jiujiang Wang ◽  
Xin Liu ◽  
Sio Hang Pun ◽  
Weibao Qiu ◽  
...  

Background:: Ultrasound is widely used in the applications of underwater imaging. Capacitive micromachined ultrasonic transducer (CMUT) is a promising candidate to the traditional piezoelectric ultrasonic transducer. In underwater ultrasound imaging, better resolutions can be achieved with a higher frequency ultrasound. Therefore, a CMUT array for high-frequency ultrasound imaging is proposed in this work. Methods:: Analytical methods are used to calculate the center frequency in water and the pull-in voltage for determining the operating point of CMUT. Finite element method model was developed to finalize the design parameters. The CMUT array was fabricated with a five-mask sacrificial release process. Results:: The CMUT array owned an immersed center frequency of 2.6 MHz with a 6 dB fractional bandwidth of 123 %. The pull-in voltage of the CMUT array was 85 V. An underwater imaging experiment was carried out with the target of three steel wires. Conclusion:: In this study, we have developed CMUT for high-frequency underwater imaging. The experiment showed that the CMUT can detect the steel wires with the diameter of 100 μm and the axial resolution was 0.582 mm, which is close to one wavelength of ultrasound in 2.6 MHz.


2020 ◽  
Vol 47 (3) ◽  
pp. 547-560 ◽  
Author(s):  
Darush Yazdanfar ◽  
Peter Öhman

PurposeThe purpose of this study is to empirically investigate determinants of financial distress among small and medium-sized enterprises (SMEs) during the global financial crisis and post-crisis periods.Design/methodology/approachSeveral statistical methods, including multiple binary logistic regression, were used to analyse a longitudinal cross-sectional panel data set of 3,865 Swedish SMEs operating in five industries over the 2008–2015 period.FindingsThe results suggest that financial distress is influenced by macroeconomic conditions (i.e. the global financial crisis) and, in particular, by various firm-specific characteristics (i.e. performance, financial leverage and financial distress in previous year). However, firm size and industry affiliation have no significant relationship with financial distress.Research limitationsDue to data availability, this study is limited to a sample of Swedish SMEs in five industries covering eight years. Further research could examine the generalizability of these findings by investigating other firms operating in other industries and other countries.Originality/valueThis study is the first to examine determinants of financial distress among SMEs operating in Sweden using data from a large-scale longitudinal cross-sectional database.


Sign in / Sign up

Export Citation Format

Share Document