scholarly journals Synthesis of Reversible and Quantum Circuit Using ROCBDD and Mixed-Polarity Toffoli Gate

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 135432-135439
Author(s):  
Hieu Nguyen ◽  
Linh H. Tran
2020 ◽  
Vol 10 (18) ◽  
pp. 6407
Author(s):  
Kyoungbae Jang ◽  
Seungju Choi ◽  
Hyeokdong Kwon ◽  
Hyunji Kim ◽  
Jaehoon Park ◽  
...  

The Grover search algorithm reduces the security level of symmetric key cryptography with n-bit security level to O(2n/2). In order to evaluate the Grover search algorithm, the target block cipher should be efficiently implemented in quantum circuits. Recently, many research works evaluated required quantum resources of AES block ciphers by optimizing the expensive substitute layer. However, few works were devoted to the lightweight block ciphers, even though it is an active research area, nowadays. In this paper, we present optimized implementations of every Korean made lightweight block ciphers for quantum computers, which include HIGHT, CHAM, and LEA, and NSA made lightweight block ciphers, namely SPECK. Primitive operations for block ciphers, including addition, rotation, and exclusive-or, are finely optimized to achieve the optimal quantum circuit, in terms of qubits, Toffoli gate, CNOT gate, and X gate. To the best of our knowledge, this is the first implementation of ARX-based Korean lightweight block ciphers in quantum circuits.


2014 ◽  
Vol 14 (13&14) ◽  
pp. 1149-1164
Author(s):  
Yasuhiro Takahashi ◽  
Takeshi Yamazaki ◽  
Kazuyuki Tanaka

We study the classical simulatability of constant-depth polynomial-size quantum circuits followed by only one single-qubit measurement, where the circuits consist of universal gates on at most two qubits and additional gates on an unbounded number of qubits. First, we consider unbounded Toffoli gates as additional gates and deal with the weak simulation, i.e., sampling the output probability distribution. We show that there exists a constant-depth quantum circuit with only one unbounded Toffoli gate that is not weakly simulatable, unless $\bqp \subseteq \postbpp \cap \am$. Then, we consider unbounded fan-out gates as additional gates and deal with the strong simulation, i.e., computing the output probability. We show that there exists a constant-depth quantum circuit with only two unbounded fan-out gates that is not strongly simulatable, unless $\p = \pp$. These results are in contrast to the fact that any constant-depth quantum circuit without additional gates on an unbounded number of qubits is strongly and weakly simulatable.


2006 ◽  
Vol 15 (05) ◽  
pp. 719-738 ◽  
Author(s):  
I-MING TSAI ◽  
SY-YEN KUO

Implementing a quantum computer at the circuit level has emerged as an important field of research recently. An important topic of building a general-purpose quantum computer is to implement classical Boolean logic using quantum gates and devices. Since the Toffoli gate is universal in classical Boolean logic, any classical combinational circuit can be implemented by the straightforward replacement algorithm with auxiliary qubits as intermediate storage. However, this inefficient implementation causes a large number of auxiliary qubits to be used. In this paper, a systematic procedure is proposed to derive a minimum space quantum circuit for a given classical combinational logic. We first formulate the problem of transforming an m-to-n bit classical Boolean logic into a t-bit unitary quantum operation. The eligible solution set is then constructed such that a solution can be found simply by selecting any member from this set. Finally, we show that the algorithm is optimal in terms of the space consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Israel F. Araujo ◽  
Daniel K. Park ◽  
Francesco Petruccione ◽  
Adenilton J. da Silva

AbstractAdvantages in several fields of research and industry are expected with the rise of quantum computers. However, the computational cost to load classical data in quantum computers can impose restrictions on possible quantum speedups. Known algorithms to create arbitrary quantum states require quantum circuits with depth O(N) to load an N-dimensional vector. Here, we show that it is possible to load an N-dimensional vector with exponential time advantage using a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits. Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space. We demonstrate a proof of concept on a real quantum device and present two applications for quantum machine learning. We expect that this new loading strategy allows the quantum speedup of tasks that require to load a significant volume of information to quantum devices.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Ismail Ghodsollahee ◽  
Zohreh Davarzani ◽  
Mariam Zomorodi ◽  
Paweł Pławiak ◽  
Monireh Houshmand ◽  
...  

AbstractAs quantum computation grows, the number of qubits involved in a given quantum computer increases. But due to the physical limitations in the number of qubits of a single quantum device, the computation should be performed in a distributed system. In this paper, a new model of quantum computation based on the matrix representation of quantum circuits is proposed. Then, using this model, we propose a novel approach for reducing the number of teleportations in a distributed quantum circuit. The proposed method consists of two phases: the pre-processing phase and the optimization phase. In the pre-processing phase, it considers the bi-partitioning of quantum circuits by Non-Dominated Sorting Genetic Algorithm (NSGA-III) to minimize the number of global gates and to distribute the quantum circuit into two balanced parts with equal number of qubits and minimum number of global gates. In the optimization phase, two heuristics named Heuristic I and Heuristic II are proposed to optimize the number of teleportations according to the partitioning obtained from the pre-processing phase. Finally, the proposed approach is evaluated on many benchmark quantum circuits. The results of these evaluations show an average of 22.16% improvement in the teleportation cost of the proposed approach compared to the existing works in the literature.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Sign in / Sign up

Export Citation Format

Share Document