Evaluation and Development of the OSRA Interaction Layer for Inter-Component Communication

Author(s):  
Jan Sommer ◽  
Raghuraj Tarikere Phaniraja Setty ◽  
Olaf Maibaum ◽  
Andrea Gerndt ◽  
Daniel Ludtke
Keyword(s):  
2017 ◽  
Vol 375 ◽  
pp. 29-39
Author(s):  
Boris A. Tarasov ◽  
Stepan N. Nikitin ◽  
Dmitry P. Shornikov ◽  
Maria S. Tarasova ◽  
Igor I. Konovalov

Paper presents the results of the growth rate of the interaction layer of uranium-molybdenum dispersed fuel in aluminum matrix and influence of silicon alloying on it. The growth process of amorphous interaction layer depends on the radiation diffusion which is proportional to the fission rate in the power of 1⁄4. The alloying of the matrix by silicon does not lead to a change in the mechanism and kinetics of the interaction layer growth, but only slows it down.


2004 ◽  
Vol 823 ◽  
Author(s):  
Julie Muyco ◽  
Timothy Ratto ◽  
Christine Orme ◽  
Joanna McKittrick ◽  
John Frangos

AbstractTitanium was exposed to dilute solutions of hydrogen peroxide (H2O2) to better characterize the interaction at the interface between the solution and metal. The intensity of light passing through films of known thickness of titanium on quartz was measured as a function of time in contact with H2O2in concentrations of 0.3% and 1.0%. An atomic force microscope (AFM) was used to record deflection-distance (force) curves as a probe approached the interface of titanium in contact with solution containing 0.3% of H2O2. The interaction layer measured using AFM techniques was much greater than the thickness of the titanium films used in this study. Raman spectroscopy taken during interaction shows the emergence of a Ti-peroxy gel and titania after 2 hours in contact with 0.3% H2O2solution.


Author(s):  
Maman Kartaman Ajiriyanto ◽  
Aslina Br. Ginting ◽  
Junaedi Junaedi

Telah dilakukan analisis metalografi pelat elemen bakar (PEB) U3Si2/Al pasca iradiasi di dalam hotcell. Tujuan analisis metalografi untuk mengetahui perubahan mikrostruktur PEB U3Si2/Al dan ketebalan kelongsong AlMg2 setelah mengalami iradiasi didalam reaktor hingga burnup 56%. PEB U3Si2/Al pasca iradiasi dipotong pada posisi top, middle dan bottom dengan ukuran masing-masing sekitar 5x5x1,37mm. Preparasi metalografi dimulai dari pemotongan PEB menggunakan cutting machine dengan low speed, mounting, grinding, dan polishing didalam hotcell 104 – 105. Proses mounting dilakukan menggunakan resin dengan waktu >10 jam, proses grinding menggunakan kertas ampas hingga ukuran grit 2400 dan proses polishing dilakukan menggunakan pasta intan dari ukuran 3 sampai 1 mikron dengan kecepatan putar 150 rpm selama 5 menit. Pengamatan mikrostruktur menggunakan mikroskop optik di hotcell 107 dengan perbesaran 200 kali. Hasil analisis mikrostruktur diperoleh partikel U3Si2 dengan bentuk dan ukuran beragam, matriks Al dan kelongsong AlMg2 yang tersebar sepanjang PEB U3Si2/Al. Pengamatan mikrostruktur PEB U3Si2/Al pasca iradiasi belum menunjukkan hasil yang baik karena hanya dapat mengamati topografi meat U3Si2/Al, matriks Al dan kelongsong AlMg2. Hal ini disebabkan karena pengamatan mikrostruktur dengan menggunakan mikroskop optik di dalam hotcell maksimal hanya dengan perbesaran 200 kali sehingga fenomena interaction layer dan small gas bubble tidak dapat diamati. Namun mikrostruktur PEB U3Si2/Al dengan burn up 56% dibandingkan dengan mikrostruktur bahan bakar U3Si2/Al pasca iradiasi dengan burn up 60% yang merupakan hasil peneliti sebelumnya, hasilnya menunjukkan adanya interaksi antara meat U3Si2 dengan matriks Al dan adanya lapisan atau layer dengan ketebalan sekitar 5 hingga 20 mikron. Sementara itu, ketebalan kelongsong AlMg2 diperoleh lebih besar dari 0,25 mm, hal ini menunjukkan bahwa pengaruh iradiasi tidak memberikan perubahan ketebalan kelongsong AlMg2 secara signifikan sehingga secara keseluruhan PEB U3Si2-Al pasca iradiasi masih memiliki integritas dan kestabilan cukup baik.Kata kunci: PEB U3Si2/Al, pasca iradiasi, mikrostruktur, ketebalan kelongsong


Author(s):  
Uma Shanker Tiwary ◽  
Tanveer J. Siddiqui

The objective of this chapter is twofold. On one hand, it tries to introduce and present various components of Human Computer Interaction (HCI), if HCI is modeled as a process of cognition; on the other hand, it tries to underline those representations and mechanisms which are required to develop a general framework for a collaborative HCI. One must try to separate the specific problem solving skills and specific problem related knowledge from the general skills and knowledge acquired in interactive agents for future use. This separation leads to a distributed deep interaction layer consisting of many cognitive processes. A three layer architecture has been suggested for designing collaborative HCI with multiple human and computational agents.


2013 ◽  
Vol 113 (14) ◽  
pp. 143905 ◽  
Author(s):  
L. J. Zeng ◽  
T. Greibe ◽  
S. Nik ◽  
C. M. Wilson ◽  
P. Delsing ◽  
...  

2009 ◽  
Vol 60 (8) ◽  
pp. 888-893 ◽  
Author(s):  
M.I. Mirandou ◽  
S.F. Aricó ◽  
S.N. Balart ◽  
L.M. Gribaudo

1985 ◽  
Vol 107 (2) ◽  
pp. 123-130 ◽  
Author(s):  
G. Tzeghai ◽  
S. Weinbaum ◽  
R. Pfeffer

It is now generally accepted that the intercellular cleft between adjacent endothelial cells is the primary pathway for the transluminal movement of water and small ions in the vasculature. A steady-state theoretical model has been developed to show quantitatively how the geometry of the intercellular cleft between adjacent endothelial cells is related to both the water movement and pressure distribution in the subendothelial space and to examine how the existence of a subendothelial interaction layer affects the hydraulic resistance of the media of vessels of varying wall thickness. The velocity and pressure fields in the media are described using porous matrix theory based on Darcy’s law and a lubrication-type analysis is used to describe the flow in a variable geometry intercellular cleft. These two equations are solved simultaneously to determine the unknown pressure distribution beneath the endothelium and the flow in the arterial media. Application of this model shows that, when the tight junction in the cleft is 26 Å or less, more than half of the total hydraulic resistance of the wall occurs across the endothelial cell monolayer, for a vessel whose wall thickness is less than 0.02 cm. This finding is in good agreement with the experimental findings of Vargas, et al. (1978) for rabbit aorta. Contrary to previous belief, the model shows that the filtration resistance of an arterial wall with intact endothelium does not scale linearly with wall thickness due to the highly nonlinear resistance of the endothelial interaction layer.


1968 ◽  
Vol 33 ◽  
pp. 187-189 ◽  
Author(s):  
J. Rajchl

A model of the head echo is examined, in which, as a source of ionization and recombination, an interaction layer of impinging atmospheric molecules (O2) mixing with reflected ones is assumed. Dissociative recombination is considered as the most probable process. If we suppose that the interaction layer is that arising in nearly free molecular flow with no shock wave present, we obtain, using the observed heights of head echoes, dimensions of meteoroids in the range 10–1 cm for absolute magnitudes between −10 and −2. It is shown that such a layer may be used to explain the high initial recombination coefficient of the order of 10−5 cm3/sec. Using the ionization collision cross-sections measured by Utterback (1963) we obtain for the mean extent of the interaction layer a value 1–100 m for heights 80–130 km, in accordance with radar observations.


2013 ◽  
Vol 29 (4) ◽  
pp. 357-364 ◽  
Author(s):  
A.S. Bakry ◽  
H. Takahashi ◽  
M. Otsuki ◽  
J. Tagami

Sign in / Sign up

Export Citation Format

Share Document