Performance Analysis of a Grid Based Route Discovery in AODV Routing Algorithm for MANET

Author(s):  
Abderezak Touzene ◽  
Ishaq Al-Yahyai
2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Sohail Jabbar ◽  
Rabia Iram ◽  
Muhammad Imran ◽  
Awais Ahmad ◽  
Anand Paul ◽  
...  

Network lifetime is one of the most prominent barriers in deploying wireless sensor networks for large-scale applications because these networks employ sensors with nonrenewable scarce energy resources. Sensor nodes dissipate most of their energy in complex routing mechanisms. To cope with limited energy problem, we present EASARA, an energy aware simple ant routing algorithm based on ant colony optimization. Unlike most algorithms, EASARA strives to avoid low energy routes and optimizes the routing process through selection of least hop count path with more energy. It consists of three phases, that is, route discovery, forwarding node, and route selection. We have improved the route discovery procedure and mainly concentrate on energy efficient forwarding node and route selection, so that the network lifetime can be prolonged. The four possible cases of forwarding node and route selection are presented. The performance of EASARA is validated through simulation. Simulation results demonstrate the performance supremacy of EASARA over contemporary scheme in terms of various metrics.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Farrukh Aslam Khan ◽  
Wang-Cheol Song ◽  
Khi-Jung Ahn

In this paper, the performance analysis of a hierarchical routing protocol for mobile ad hoc networks (MANETs) called Location-aware Grid-based Hierarchical Routing (LGHR) is performed. In LGHR, the network comprises nonoverlapping zones and each zone is further partitioned into smaller grids. Although LGHR is a location-aware routing protocol, the routing mechanism is similar to the link-state routing. The protocol overcomes some of the weaknesses of other existing location-based routing protocols such as Zone-based Hierarchical Link State (ZHLS) and GRID. A detailed analysis of the LGHR routing protocol is performed and its performance is compared with both the above-mentioned protocols. The comparison shows that LGHR works better than ZHLS in terms of storage overhead as well as communication overhead, whereas LGHR is more stable than GRID especially in scenarios where wireless nodes are moving with very high velocities.


Author(s):  
Saloni Dhiman ◽  
Deepti Kakkar ◽  
Gurjot Kaur

Wireless sensor networks (WSNs) consist of several sensor nodes (SNs) that are powered by battery, so their lifetime is limited, which ultimately affects the lifespan and hence performance of the overall networks. Till now many techniques have been developed to solve this problem of WSN. Clustering is among the effective technique used for increasing the network lifespan. In this chapter, analysis of multi-hop routing protocol based on grid clustering with different selection criteria is presented. For analysis, the network is divided into equal-sized grids where each grid corresponds to a cluster and is assigned with a grid head (GH) responsible for collecting data from each SN belonging to respective grid and transferring it to the base station (BS) using multi-hop routing. The performance of the network has been analyzed for different position of BS, different number of grids, and different number of SNs.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3642 ◽  
Author(s):  
Genta ◽  
K.Lobiyal ◽  
Abawajy

Wireless multimedia sensor networks (WMSNs) are capable of collecting multimedia events, such as traffic accidents and wildlife tracking, as well as scalar data. As a result, WMSNs are receiving a great deal of attention both from industry and academic communities. However, multimedia applications tend to generate high volume network traffic, which results in very high energy consumption. As energy is a prime resource in WMSN, an efficient routing algorithm that effectively deals with the dynamic topology of WMSN but also prolongs the lifetime of WMSN is required. To this end, we propose a routing algorithm that combines dynamic cluster formation, cluster head selection, and multipath routing formation for data communication to reduce energy consumption as well as routing overheads. The proposed algorithm uses a genetic algorithm (GA)-based meta-heuristic optimization to dynamically select the best path based on the cost function with the minimum distance and the least energy dissipation. We carried out an extensive performance analysis of the proposed algorithm and compared it with three other routing protocols. The results of the performance analysis showed that the proposed algorithm outperformed the three other routing protocols.


Sign in / Sign up

Export Citation Format

Share Document