Evaluation of antenna performance for use in wide band wireless protocols

Author(s):  
Kuruvilla Mathew ◽  
Biju Issac ◽  
Tan Chong Eng

Elliptical Micro-strip Patch Antenna (EMPA) has been emerged as a peculiar and significant category among the different shaped micro-strip patch antennas because of its circular polarization and dual-resonant frequency features with a single feed. Elliptical and its derived shapes such as semielliptical, half-elliptical, slotted-elliptical and elliptical ring are found to be particularly instrumental for bandwidth enhancement and these antennas find great applications in Ultra Wide Band (UWB) and Super Wide Band (SWB) communications. Compared to antennas with circular or rectangular shapes, the design of EMPA is a research area of high potential as there is higher flexibility in its design due to more degrees of freedom. The reported literature in the field of EMPA is very less and there is ample scope for new researchers to work on. This review paper is an attempt to summarize and critically assess the-state-of-the-art design techniques as reported in literature and understand their effects on performance of elliptical patch antenna for suggesting new research fronts in the field of EMPA.


2019 ◽  
Vol 18 (1) ◽  
pp. 1-10
Author(s):  
Sadia Sultana ◽  
Rinku Basak

A unique design and meander line implantable antenna is examined in this paper which satisfies the requirements of ultra-wide band. The designed antenna is integrated with the electromagnetic band gap (EBG) structure based ground plane to enhance the performance. Rectangular electromagnetic band gap (EBG) structures are represented here to evaluate the antenna performance. This compact and efficient MLA antenna is applied to improve the antenna performance for numerous implantable scenarios and biomedical applications. The proposed antenna with EGB ground plane is designed for both the simplified model and anatomical realistic models for the human body and executed the performance in bio-environment. To approve the results of implantable antennas more correctly, simulation is analyzed using anatomical realistic human models. The ultimate design has the whole dimension is 15.2 x 8.8 m2. The thickness of the antenna is about 0.8 mm. FR4 is chosen as the substrate material and Copper is chosen as the patch material. The antenna is enclosed biocompatible material with silicon inside the tissue in order to protect patient safety. Significant parameters such as S11 parameter, Far field (radiation pattern), VSWR, Efficiency, Directivity, Gain of the proposed antenna have calculated and measured the performance both the simplified and realistic human models. Comparison Analysis of S11 parameter for different substrate materials and patch materials have observed. The radiation mechanism and modified design of the implantable antenna reducing Specific Absorption Rate (SAR) for safety issues. All the simulation results and measurements are obtained from CST Microwave Studio to validate the design.


This article deals with the various designs of a novel compact microstrip fed UWB antenna to investigate the corresponding return losses of different structures. The dimension of the designed antenna is 33 x 19 x 1.9 mm3 with FR4 substrate and it can be operated from 2.846 - 11.7458 GHz. The effects of varying the structure of antenna are to exhibit the investigation of corresponding return losses. Different structures of antenna are simulated in Ansoft HFSS simulator. The results of return losses and radiation patterns are explored with the ultra wide band (UWB) rectangular Stair slot antenna. The modified structure of antenna shows the minimized return loss with an enhanced bandwidth that satisfies good UWB characteristics. Antenna performance can also be explored from the radiation behavior of the antenna which is relatively omni-directional pattern for rectangular Stair slot antenna


Author(s):  
Anupma Gupta ◽  
Paras Chawla ◽  
Ankush Kansal ◽  
Kulbir Singh

: A defected ground antenna with dielectric reflector is designed and investigated for breast tumour diagnosis. Ultra-wide band resonance (3.1 to 10.6 GHz) is achieved by etching two slots and adding a narrow vertical strip in a patch antenna. A high dielectric constant substrate is added below the antenna, which shows remarkable effect on performance. Antenna performance is verified experimentally on an artificially fabricated breast tissue and tumour. Malignant tissue has different dielectric properties than the normal tissue, that causes deviation in the scattered antenna power. Average value of backscattered signal variation and ground penetrating radar (GPR) algorithm is used to localize the tumour of radius 4mm in breast tissue.


Author(s):  
Leonardo Betancur Agudelo ◽  
Andres Navarro Cadavid

Nowadays, wireless Body Area Networks (wBAN) have gained more relevance, in particular in the areas of health care, emergencies, ranging, location, domotics and entertainment applications. Regulations and several wireless protocols and standards have appeared in recent years. Some of them, like Bluetooth, ZigBee, Ultra Wide Band (UWB), ECMA368, WiFi, GPRS and mobile applications offer different kinds of solutions for personal area communications. In this chapter, body area network channel modelling will be described; also, a brief description of the applications and state-of-the-art of regulation and standardization processes pertaining to these kinds of networks will be presented. For each topic, the chapter shows not only the main technical characteristics, but also the technical problems and challenges in recent and future research. Finally, the chapter provides an analysis of Body Area Networks, opinions about the future and possible scenarios in the short- and medium-term for the development of standards and applications and their impacts on our daily lives.


A Fabric antenna is used for on body communications. Millimeter wave antenna consists of small beams with high frequency and high directive improves high data communication. It helps us to reduce the barring between user and communication device. This proposed antenna is designed at 60 GHz. It has mainly integrated with wireless sensor network and medical applications. This antenna is designed with the help of HFSS Software. Later HFSS can be explained in the simulation tool. The aim of the paper is, in human body we will insert cloth sensors to monitor different physiological parameters regardless of the patient location. The information passed instantly to the doctor using an external processing unit. In case of any emergency the patient is alerted through appropriate message or alarms. Designed antenna dimensions are 27.3 mm × 8.5 mm × 0.8 mm. Antenna performance is analyzed by using simulated results of reflection co-efficient, VSWR, gain, bandwidth and directivity.


2021 ◽  
Vol 9 (2) ◽  
pp. 740-746
Author(s):  
Vutukuri Sarvani Duti Rekha, Et. al.

A frequency reconfigurable ultra-wide band antenna with dual notch bands is proposed in this paper. PIN diodes are located on ultra-wide band monopole antenna and are investigated for frequency reconfigurable characteristic of the proposed antenna. Multi-bands and narrow bands have been achieved by different combinations. Proposed antenna is fabricated on FR-4 substrate of dimensions 37 x 40 x 0.8mm3. For the successful combinations, antenna performance parameters like S11 characteristics, surface current distribution, peak gain, radiation efficiency and 2D radiation patterns are analyzed and illustrated in the paper. Peak gain of 4.83dB is obtained in operating band for D1, D2= 0, 1 combination. Radiation efficiency is not less than 70% in the entire operating bands. Results are analyzed experimentally for validating proposed antenna. Simulation based results and measured results are in good agreement.


2019 ◽  
Vol 11 (16) ◽  
pp. 1937 ◽  
Author(s):  
Dylan A. Crocker ◽  
Waymond R. Scott

In order to improve the accuracy of subsurface target classification with ground penetrating radar (GPR) systems, it is desired to transmit and receive ultra-wide band pulses with varying combinations of polarization (a technique referred to as polarimetry). The sinuous antenna exhibits such desirable properties as ultra-wide bandwidth, polarization diversity, and low-profile form factor, making it an excellent candidate for the radiating element of such systems. However, sinuous antennas are dispersive since the active region moves with frequency along the structure, resulting in the distortion of radiated pulses. This distortion may be compensated in signal processing with accurately simulated or measured antenna phase information. However, in a practical GPR, the antenna performance may deviate from that simulated, accurate measurements may be impractical, and/or the dielectric loading of the environment may cause deviations. In such cases, it may be desirable to employ a simple dispersion model based on antenna design parameters which may be optimized in situ. This paper explores the dispersive properties of the sinuous antenna and presents a simple, adjustable, model that may be used to correct dispersed pulses. The dispersion model is successfully applied to both simulated and measured scenarios, thereby enabling the use of sinuous antennas in polarimetric GPR applications.


2015 ◽  
Author(s):  
◽  
Falih Mahdi Mousa Alnahwi

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] In this work, we propose ultra wide band antennas that have small size and simple shapes. The new designs have comparable or improved performance than those of the already available antennas. The thesis aims can be summarized as follows: 1) First, design and fabricate both monopole and wide slot UWB antennas that have simple and small structures and analyze for performance comparable to those of the more complex designs and/or larger size. This part of the thesis can be achieved by modifying already existing antennas, and then utilize them to achieve the second aim of this work, as discussed below. 2) Propose new generalized ways for band notch generation that are suitable for all UWB antennas. This will result in a significant reduction in the optimization parameters. Finally the optimized design will be fabricated to verify the proposed idea. 3) Design and fabricate a new planar monopole switchable antenna that can switch between Multiband/UWB mode that covers the entire indoor applications and Multiband mode that covers some of the outdoor applications for a versatile antenna performance.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 677
Author(s):  
Elham A. Serria ◽  
Mousa I. Hussein

This study is addressing the slotted ring resonator effect on the performance of the ultra-wide band (UWB) microstrip antenna. Two types of metamaterial with double slotted ring resonators (SRR), circular (C-SRR) and square (S-SRR), are studied and implemented on back of the antenna. The design examines the effect of the number of the SRR and its position with respect to the antenna’s ground plane and the rotation of the inner and outer C-SRR rings on different antenna characteristics. The dimensions of the antenna are 45 mm × 31 mm × 1.27 mm. The implementation of the SRR increased the antenna bandwidth to cover the range from 2.2 GHz to 9.8 GHz with rejected bands and frequencies. Antenna simulated characteristics like return loss, maximum gain and radiation pattern are obtained utilizing HFSS. The return loss measurement and the VSWR of the antenna with all SRR configuration studied are in good agreement with simulated results.


Sign in / Sign up

Export Citation Format

Share Document