A Novel Input Stage Based on DTMOS for Low-Voltage Low-Noise Operational Amplifier

Author(s):  
ZhiYuan Li ◽  
MingYan Yu ◽  
JianGuo Ma
2020 ◽  
Vol 10 (23) ◽  
pp. 8376
Author(s):  
Hyungseup Kim ◽  
Yongsu Kwon ◽  
Donggeun You ◽  
Hyun-Woong Choi ◽  
Seong Hyun Kim ◽  
...  

This paper presents a low-noise chopper operational amplifier using a lateral PNP input stage with bipolar junction transistor (BJT) current mirror base current cancellation. The BJT has a lower noise characteristic than the metal–oxide–semiconductor (MOS) transistor, where low-noise characteristics can be achieved by implanting the BJT to the input stage of the amplifier; however, the base current of the BJT input stage causes low input impedance of the amplifier. The BJT current mirror base current cancellation technique is implemented to enhance the input impedance of the BJT input stage by canceling the base current. BJT current mirror base current cancellation is implemented with a simple scheme using NPN transistors with deep n-well in a generic complementary metal–oxide–semiconductor (CMOS) process. For further noise reduction with the BJT input stage, a chopper amplifier scheme is adopted to reduce low-frequency components such as 1/f noise terms in the low-frequency range. The prototype chip is fabricated in a 0.18-μm CMOS process. The active area of the prototype amplifier is 0.213 mm2. The measured input-referred noise is 5.43 nV/√Hz. The measured input base current of the amplifier with base current cancellation is 67.971 nA. The total amplifier current consumption is 278.3 μA, with a power supply of 3.3 V.


2013 ◽  
Vol 380-384 ◽  
pp. 3283-3286
Author(s):  
Lin Hai Cui ◽  
Rui Xu ◽  
Zhan Peng Jiang ◽  
Chang Chun Dong

A low voltage, low power two-stage operational amplifier (op-amp) was proposed in this paper. A folded-cascode structure is used in the input stage of the amplifier to get high gain. Current mirrors are used in the input stage to make the transconduotance constant. A simple push-pull common source amplifier is adopted as the output stage to take the advantages of its high efficiency. The experimental results show that the unity-gain bandwidth is 12.5MHz, the low-frequency open-loop voltage gain is 100dB,the phase margin is 65°, and power dissipation is 98.8μw.


Author(s):  
Shitesh Tiwari ◽  
Sumant Katiyal ◽  
Parag Parandkar

Voltage Controlled Oscillator (VCO) is an integral component of most of the receivers such as GSM, GPS etc. As name indicates, oscillation is controlled by varying the voltage at the capacitor of LC tank. By varying the voltage, VCO can generate variable frequency of oscillation. Different VCO Parameters are contrasted on the basis of phase noise, tuning range, power consumption and FOM. Out of these phase noise is dependent on quality factor, power consumption, oscillation frequency and current. So, design of LC VCO at low power, low phase noise can be obtained with low bias current at low voltage.  Nanosize transistors are also contributes towards low phase noise. This paper demonstrates the design of low phase noise LC VCO with 4.89 GHz tuning range from 7.33-11.22 GHz with center frequency at 7 GHz. The design uses 32nm technology with tuning voltage of 0-1.2 V. A very effective Phase noise of -114 dBc / Hz is obtained with FOM of -181 dBc/Hz. The proposed work has been compared with five peer LC VCO designs working at higher feature sizes and outcome of this performance comparison dictates that the proposed work working at better 32 nm technology outperformed amongst others in terms of achieving low Tuning voltage and moderate FoM, overshadowed by a little expense of power dissipation. 


2021 ◽  
Vol 11 (2) ◽  
pp. 19
Author(s):  
Francesco Centurelli ◽  
Riccardo Della Sala ◽  
Pietro Monsurrò ◽  
Giuseppe Scotti ◽  
Alessandro Trifiletti

In this paper, we present a novel operational transconductance amplifier (OTA) topology based on a dual-path body-driven input stage that exploits a body-driven current mirror-active load and targets ultra-low-power (ULP) and ultra-low-voltage (ULV) applications, such as IoT or biomedical devices. The proposed OTA exhibits only one high-impedance node, and can therefore be compensated at the output stage, thus not requiring Miller compensation. The input stage ensures rail-to-rail input common-mode range, whereas the gate-driven output stage ensures both a high open-loop gain and an enhanced slew rate. The proposed amplifier was designed in an STMicroelectronics 130 nm CMOS process with a nominal supply voltage of only 0.3 V, and it achieved very good values for both the small-signal and large-signal Figures of Merit. Extensive PVT (process, supply voltage, and temperature) and mismatch simulations are reported to prove the robustness of the proposed amplifier.


2004 ◽  
Vol 04 (02) ◽  
pp. L345-L354 ◽  
Author(s):  
Y. HADDAB ◽  
V. MOSSER ◽  
M. LYSOWEC ◽  
J. SUSKI ◽  
L. DEMEUS ◽  
...  

Hall sensors are used in a very wide range of applications. A very demanding one is electrical current measurement for metering purposes. In addition to high precision and stability, a sufficiently low noise level is required. Cost reduction through sensor integration with low-voltage/low-power electronics is also desirable. The purpose of this work is to investigate the possible use of SOI (Silicon On Insulator) technology for this integration. We have fabricated SOI Hall devices exploring the useful range of silicon layer thickness and doping level. We show that noise is influenced by the presence of LOCOS and p-n depletion zones near the edges of the active zones of the devices. A proper choice of SOI technological parameters and process flow leads to up to 18 dB reduction in Hall sensor noise level. This result can be extended to many categories of devices fabricated using SOI technology.


Sign in / Sign up

Export Citation Format

Share Document