Power Module Design without Solder Interfaces - an Ideal Solution for Hybrid Vehicle Traction Applications

Author(s):  
U. Scheuermann
Author(s):  
Zhao Wen-jie ◽  
Wan Cheng-an ◽  
Gao Yi-fei ◽  
Zhang Guo-shuai ◽  
Zheng Yan ◽  
...  

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000289-000296 ◽  
Author(s):  
James D. Scofield ◽  
J. Neil Merrett ◽  
James Richmond ◽  
Anant Agarwal ◽  
Scott Leslie

A custom multi-chip power module packaging was designed to exploit the electrical and thermal performance potential of silicon carbide MOSFETs and JBS diodes. The dual thermo-mechanical package design was based on an aggressive 200°C ambient environmental requirement and 1200 V blocking and 100 A conduction ratings. A novel baseplate-free module design minimizes thermal impedance and the associated device junction temperature rise. In addition, the design incorporates a free-floating substrate configuration to minimize thermal expansion coefficient induced stresses between the substrate and case. Details of the module design and materials selection process will be discussed in addition to highlighting deficiencies in current packaging materials technologies when attempting to achieve high thermal cycle life reliability over an extended temperature range.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000149-000158
Author(s):  
Xin Zhao ◽  
Haotao Ke ◽  
Yifan Jiang ◽  
Adam Morgan ◽  
Yang Xu ◽  
...  

Abstract This paper presents design, fabrication and characterization details of a 10kV power module package for >200°C ambient temperature applications. Electrical simulations were performed to confirm the module design, and that the electric field distribution throughout the module did not exceed dielectric capabilities of components and materials. A suitable copper etching process was demonstrated for DBC layout, and a high melting point Sn/Pb/Ag solder reflow process was developed for device and component attachment. To monitor the operational temperature of the module, a thermistor was integrated onto the substrate. A new silicone gel, having a working temperature up to 210°C, was evaluated and selected for encapsulation and, of great importance, for passivation of high voltage (10kV) SiC dies. An additive manufacturing ‘Design Process’ was developed and applied to printing the housings, molds, and test fixtures. Also, cleaning processes were evaluated for every step in the fabrication process. To verify performance of the modules, mechanical dies were mounted on the substrates, and a high temperature testing setup built to characterize the modules at high temperature. Measurements indicated that the module can operate up to 12kV within 25°C to 225°C, with less than 0.1 μA leakage current. The packaging was used for full-power characterization of developmental 10kV SiC diodes, and proved that the power module packaging satisfied all requirements for high voltage and high temperature applications. This work successfully validated the processes for creating high voltage (>10 kV) and high temperature (>200°C) power modules.


2015 ◽  
Vol 2015 (1) ◽  
pp. 000324-000329 ◽  
Author(s):  
Wenli Zhang ◽  
Zhengyang Liu ◽  
Fred Lee ◽  
Shuojie She ◽  
Xiucheng Huang ◽  
...  

The totem-pole bridgeless power factor correction (PFC) rectifier has recently gained popularity for ac-dc power conversion. The emerging gallium nitride (GaN) high-electron-mobility transistor (HEMT), having a small body diode reverse recovery effect and low switching loss, is a promising device for use in the totem-pole approach. The design, fabrication, and thermal analysis of a GaN-based full-bridge multi-chip module (MCM) for totem-pole bridgeless PFC rectifier are introduced in this work. Four cascode GaN devices using the same pair of high-voltage GaN HEMT and low-voltage silicon (Si) power metal-oxide-semiconductor field-effect transistor (MOSFET) chips, as used in the discrete TO-220 package, were integrated onto one aluminum nitride direct-bonded-copper (AlN-DBC) substrate in a newly designed MCM. This integrated power module achieves the same function as four discrete devices mounted on the circuit board. In this module design, the Si and GaN bare die were arranged in a stack-die format for each cascode device to eliminate the critical common source inductance, and thus to reduce parasitic ringing at turn-off transients. In addition, an extra capacitor was added in parallel with the drain-source terminals of the Si MOSFET in each cascode GaN device to compensate for the mismatched junction capacitance between the Si MOSFET and GaN HEMT, which could accomplish the internal zero-voltage switching of the GaN device and reduce its turn-on loss. The AlN-DBC substrate and the flip-chip format were also applied in the module design. This GaN-based MCM shows an improved heat dissipation capability based on the thermal analysis and comparison with the discrete GaN device. The totem-pole bridgeless PFC rectifier built using this integrated power module is expected to have a peak efficiency of higher than 99% with a projected power density greater than 400 W/in3.


Sign in / Sign up

Export Citation Format

Share Document