Using Recycled Waste Material from UAE in Concrete

Author(s):  
Muhammad Faiz Ahmed ◽  
Sheikh Hamza Rizwan ◽  
Muhammad Haseeb Ahmed ◽  
Mustafa Batikha
ce/papers ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 495-502
Author(s):  
Severin Seifert ◽  
Anna-Lena Liesch ◽  
Volker Thome ◽  
Sebastian Dittrich ◽  
Daniela Wolfram

2018 ◽  
Vol 4 (11) ◽  
pp. 6
Author(s):  
Upendra Kumar ◽  
Avinash Patidar ◽  
Bhupendra Koshti

The design and control of blast furnace (BF) ironmaking must be optimized in order to be competitive and sustainable, particularly under the more and more demanding and tough economic and environmental conditions. To achieve this, it is necessary to understand the complex multiphase flow, heat and mass transfer, and global performance of a BF. In this paper injection of alternative reducing agents via lances in the tubers of blast furnaces is discussed to reduce the consumption of metallurgical coke. Besides liquid hydrocarbons and pulverized coal the injection of recycled waste plastics is possible, offering the opportunity to chemically reuse waste material and also utilize the energy contained in such remnants.


1999 ◽  
Vol 39 (10-11) ◽  
pp. 193-196
Author(s):  
J. Petersen ◽  
J. G. Petrie

The release of heavy metal species from deposits of solid waste materials originating from minerals processing operations poses a serious environmental risk should such species migrate beyond the boundaries of the deposit into the surrounding environment. Legislation increasingly places the liability for wastes with the operators of the process that generates them. The costs for long-term monitoring and clean-up following a potential critical leakage have to be factored in the overall project plan from the outset. Thus assessment of the potential for a particular waste material to generate a harmful leachate is directly relevant for estimating the environmental risk associated with the planned disposal operation. A rigorous mechanistic model is proposed, which allows prediction of the time-dependent generation of a leachate from a solid mineral waste deposit. Model parameters are obtained from a suitably designed laboratory waste assessment methodology on a relatively small sample of the prospective waste material. The parameters are not specific to the laboratory environment in which they were obtained but are valid also for full-scale heap modelling. In this way the model, combined with the assessment methodology, becomes a powerful tool for meaningful assessment of the risks associated with solid waste disposal strategies.


2020 ◽  
Author(s):  
Sheyla B. Palomino Ore ◽  
◽  
Pablo Quesada Oloriz ◽  
Oscar Tafur Lopez ◽  
Junior Marca Salcedo ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Azizul Moqsud

AbstractIn this research, bioremediation of tsunami-affected polluted soil has been conducted by using collective microorganisms and recycled waste glass. The Tohoku earthquake, which was a mega earthquake in Japan triggered a huge tsunami on March 11th, 2011 that caused immeasurable damage to the geo-environmental conditions by polluting the soil with heavy metals and excessive salt content. Traditional methods to clean this polluted soil was not possible due to the excess cost and efforts. Laboratory experiments were conducted to examine the capability of bioremediation of saline soil by using recycled waste glass. Different collective microorganisms which were incubated inside the laboratory were used. The electrical conductivity (EC) was measured at different specified depths. It was noticed that the electrical conductivity decreased with the assist of the microbial metabolisms significantly. Collective microorganisms (CM2) were the highly capable to reduce salinity (up to 75%) while using recycled waste glass as their habitat.


Author(s):  
Suveer Chandra Dubey ◽  
Vivek Mishra ◽  
Abhishek Sharma

Author(s):  
Stefano Bertacchi ◽  
Stefania Pagliari ◽  
Chiara Cantù ◽  
Ilaria Bruni ◽  
Massimo Labra ◽  
...  

In the context of the global need to move towards circular economies, microbial cell factories can be employed thanks to their ability to use side-stream biomasses from the agro-industrial sector to obtain additional products. The valorization of residues allows for better and complete use of natural resources and, at the same time, for the avoidance of waste management to address our needs. In this work, we focused our attention on the microbial valorization of cinnamon waste material after polyphenol extraction (C-PEW) (Cinnamomum verum J.Presl), generally discarded without any additional processing. The sugars embedded in C-PEW were released by enzymatic hydrolysis, more compatible than acid hydrolysis with the subsequent microbial cultivation. We demonstrated that the yeast Rhodosporidium toruloides was able to grow and produce up to 2.00 (±0.23) mg/L of carotenoids in the resulting hydrolysate as a sole carbon and nitrogen source despite the presence of antimicrobial compounds typical of cinnamon. To further extend the potential of our finding, we tested other fungal cell factories for growth on the same media. Overall, these results are opening the possibility to develop separate hydrolysis and fermentation (SHF) bioprocesses based on C-PEW and microbial biotransformation to obtain high-value molecules.


Sign in / Sign up

Export Citation Format

Share Document