2021 ◽  
Author(s):  
Chan-Young Yune ◽  
Beom-Jun Kim

<p>A debris flow with a high speed along valleys has been reported to cause serious damages to urban area or infrastructure. To prevent debris flow disaster, countermeasures for flow-impeding structures are installed on the flow path of debris flows. Recently, an installation of cylindrical baffles which are open-type countermeasures has increased because of a low construction cost, filtering out rocks, and an increased hydraulic continuity. However, a comprehensive design guideline for specification and arrangement on cylindrical baffles has not yet been suggested. Moreover, the design of baffle installation is mainly based on empirical approaches as the influence of baffle array on debris mobility is not well understood. In this study, to investigate the effect of cylindrical baffles on the flow characteristics of debris flow, a series of small-scale flume tests were performed according to the varying baffle height and row numbers of installed baffles. High-speed cameras and digital camera to record the flow interaction with baffles were installed at the top and side of the channel. To reproduce the viscosity of debris flows caused by fine-grained soil in the flume, glycerin was mixed with debris materials (sand and gravel). After the test, the velocity and energy dissipation according to various baffle arrays were estimated. Test results showed that the installation of baffles reduced the frontal velocity of debris flows. Furthermore, taller baffles also increased the effect of the energy dissipation in debris flows, but additional rows of the baffle did not have a major effect on the energy dissipation. Thus, increasing the height of baffle led to an increased efficiency of energy dissipation of debris flows.</p>


1986 ◽  
Vol 108 (4) ◽  
pp. 506-515 ◽  
Author(s):  
Shervin Hanachi ◽  
Ferdinand Freudenstein

A highly accurate and predictive dynamic model of a high-speed cam-follower system has been developed and verified. In view of the predominance of Coulomb damping in high-speed cam-follower systems, this form of damping has been used as the chief mode of energy dissipation. This has resulted in a significant improvement in the predictive capability of the dynamic model. The accuracy of the model can also be attributed to careful modeling of system components such as the distributed-parameter modeling of the valve spring, the modeling of the hydraulic lifter, and modeling of the damping due to a nested-valve spring. The latter two represent the first such modeling in the area of cam-follower systems.


2013 ◽  
Vol 10 (87) ◽  
pp. 20130572 ◽  
Author(s):  
Yung-Kang Chen ◽  
Chen-Pan Liao ◽  
Feng-Yueh Tsai ◽  
Kai-Jung Chi

Salticids are diurnal hunters known for acute vision, remarkable predatory strategies and jumping ability. Like other jumpers, they strive for stability and smooth landings. Instead of using inertia from swinging appendages or aerodynamic forces by flapping wings as in other organisms, we show that salticids use a different mechanism for in-air stability by using dragline silk, which was previously believed to function solely as a safety line. Analyses from high-speed images of jumps by the salticid Hasarius adansoni demonstrate that despite being subject to rearward pitch at take-off, spiders with dragline silk can change body orientation in the air. Instantaneous drag and silk forces calculated from kinematic data further suggest a comparable contribution to deceleration and energy dissipation, and reveal that adjustments by the spider to the silk force can reverse its body pitch for a predictable and optimal landing. Without silk, upright-landing spiders would slip or even tumble, deferring completion of landing. Thus, for salticids, dragline silk is critical for dynamic stability and prey-capture efficiency. The dynamic functioning of dragline silk revealed in this study can advance the understanding of silk's physiological control over material properties and its significance to spider ecology and evolution, and also provide inspiration for future manoeuvrable robot designs.


1985 ◽  
Vol 107 (4) ◽  
pp. 529-535 ◽  
Author(s):  
D. C. H. Yang ◽  
Z. S. Sun

We develop a dynamic model for a spur gear system with backlash. This model is circular and is geometrically different from the rectilinear gear model of Azar and Crossley. By taking advantage of involute tooth profile, we are able to take material compliance and energy dissipation into account. Furthermore, the complicated phenomenon of contact tooth pairs alternation between one and two during meshing is also included in the model. This model is believed to be closer to reality than the existing model and hopefully is useful in studying gears in high-speed and intermittent motions.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kaili Yao ◽  
Dongyang Chu ◽  
Ting Li ◽  
Zhanli Liu ◽  
Bao-Hua Guo ◽  
...  

Purpose The purpose of this paper is to calculate the Hugoniot relations of polyurea; also to investigate the atomic-scale energy change, the related chain conformation evolution and the hydrogen bond dissociation of polyurea under high-speed shock. Design/methodology/approach The atomic-scale simulations are achieved by molecular dynamics (MD). Both non-equilibrium MD and multi-scale shock technique are used to simulate the high-speed shock. The energy dissipation is theoretically derived by the thermodynamic and the Hugoniot relations. The distributions of bond length, angle and dihedral angle are used to characterize the chain conformation evolution. The hydrogen bonds are determined by a geometrical criterion. Findings The Hugoniot relations calculated are in good agreement with the experimental data. It is found that under the same impact pressure, polyurea with lower hard segment content has higher energy dissipation during the shock-release process. The primary energy dissipation way is the heat dissipation caused by the increase of kinetic energy. Unlike tensile simulation, the molecular potential increment is mainly divided into the increments of the bond energy, angle energy and dihedral angle energy under shock loading and is mostly stored in the soft segments. The hydrogen bond potential increment only accounts for about 1% of the internal energy increment under high-speed shock. Originality/value The simulation results are meaningful for understanding and evaluating the energy dissipation mechanism of polyurea under shock loading, and could provide a reference for material design.


Author(s):  
R. B. Howarth

Limited applications and investigations have shown that the floating-pad journal bearing is a practical form of bearing which can be used to advantage. The operational complexities make a rigorous analysis exceedingly difficult if not impossible, and a simplified approach is adopted. The results of the analysis suggest that the floating-pad journal bearing is most suitable for high-speed, low-load applications where advantage can be taken of its desirable properties, in particular low energy dissipation and the high lubricant flow that can be accommodated for cooling purposes. The analysis also predicts the occurrence of a self-excited vibration becoming more pronounced as the eccentricity increases.


Quantum-dot Cellular Automata (QCA) is an emerging technology used for computation at nano scale. It is an excellent alternative for the conventional CMOS technology. QCA provides us with low energy, high speed, faster switching speed and compact structures for logical circuits. Testing is the integral part of the design verification, scan flip-flop is used for device testing. It is used in processors for a built-in self-test. The objective of this paper is to design an optimized structure of a scan flip-flop which occupies less area and dissipates minimum energy compared to the previously designed architectures. The efficiency of the proposed structure is analyzed in terms of cell count, energy dissipation, and area occupied by the logical circuit. Proposed scan flip flop has a cell count of 32 and an energy dissipation of 0.0105 eV which is 20 % more efficient in terms of cell count and 29 % more efficient than the previous designs. The CAD tool, QCADesigner is used for design and simulation. Cells have a dimension of 18 nm in height and 18 nm in breadth and there is a distance of 2 nm between these cells. Bi-stable and coherence vector simulation engines are used in the tool for simulation.


Sign in / Sign up

Export Citation Format

Share Document