Classification of oesophagic early-stage cancers: deep learning versus traditional learning approaches

Author(s):  
Jorge Ferreira ◽  
Ines Domingues ◽  
Olga Sousa ◽  
Ines Lucena Sampaio ◽  
Joao A. M. Santos
2022 ◽  
pp. 274-290
Author(s):  
M. Abdul Jawad ◽  
Farida Khursheed

The expeditious progress of machine learning, especially the deep learning techniques, keep propelling the medical imaging community's heed in applying these techniques in improving the accuracy of cancer screening. Among various types of cancers, breast cancer is the most detrimental disease affecting women today. The prognosis of such types of disease becomes a very challenging task for radiologists due the huge number of cases together with careful and thorough examination it demands. The constraints of present CAD open up a need for new and accurate detection procedures. Deep learning approaches have gained a tremendous recognition in the areas of object detection, segmentation, image recognition, and computer vision. Precise and premature detection and classification of lesions is very critical for increasing the survival rates of patients. Recent CNN models are designed to enhance radiologists' understandings to identify even the least possible lesions at the very early stage.


2020 ◽  
Vol 10 (2) ◽  
pp. 84 ◽  
Author(s):  
Atif Mehmood ◽  
Muazzam Maqsood ◽  
Muzaffar Bashir ◽  
Yang Shuyuan

Alzheimer’s disease (AD) may cause damage to the memory cells permanently, which results in the form of dementia. The diagnosis of Alzheimer’s disease at an early stage is a problematic task for researchers. For this, machine learning and deep convolutional neural network (CNN) based approaches are readily available to solve various problems related to brain image data analysis. In clinical research, magnetic resonance imaging (MRI) is used to diagnose AD. For accurate classification of dementia stages, we need highly discriminative features obtained from MRI images. Recently advanced deep CNN-based models successfully proved their accuracy. However, due to a smaller number of image samples available in the datasets, there exist problems of over-fitting hindering the performance of deep learning approaches. In this research, we developed a Siamese convolutional neural network (SCNN) model inspired by VGG-16 (also called Oxford Net) to classify dementia stages. In our approach, we extend the insufficient and imbalanced data by using augmentation approaches. Experiments are performed on a publicly available dataset open access series of imaging studies (OASIS), by using the proposed approach, an excellent test accuracy of 99.05% is achieved for the classification of dementia stages. We compared our model with the state-of-the-art models and discovered that the proposed model outperformed the state-of-the-art models in terms of performance, efficiency, and accuracy.


2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.


Healthcare ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1579
Author(s):  
Wansuk Choi ◽  
Seoyoon Heo

The purpose of this study was to classify ULTT videos through transfer learning with pre-trained deep learning models and compare the performance of the models. We conducted transfer learning by combining a pre-trained convolution neural network (CNN) model into a Python-produced deep learning process. Videos were processed on YouTube and 103,116 frames converted from video clips were analyzed. In the modeling implementation, the process of importing the required modules, performing the necessary data preprocessing for training, defining the model, compiling, model creation, and model fit were applied in sequence. Comparative models were Xception, InceptionV3, DenseNet201, NASNetMobile, DenseNet121, VGG16, VGG19, and ResNet101, and fine tuning was performed. They were trained in a high-performance computing environment, and validation and loss were measured as comparative indicators of performance. Relatively low validation loss and high validation accuracy were obtained from Xception, InceptionV3, and DenseNet201 models, which is evaluated as an excellent model compared with other models. On the other hand, from VGG16, VGG19, and ResNet101, relatively high validation loss and low validation accuracy were obtained compared with other models. There was a narrow range of difference between the validation accuracy and the validation loss of the Xception, InceptionV3, and DensNet201 models. This study suggests that training applied with transfer learning can classify ULTT videos, and that there is a difference in performance between models.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 30
Author(s):  
Bang Yuan Chong ◽  
Iftekhar Salam

This paper studies the use of deep learning (DL) models under a known-plaintext scenario. The goal of the models is to predict the secret key of a cipher using DL techniques. We investigate the DL techniques against different ciphers, namely, Simplified Data Encryption Standard (S-DES), Speck, Simeck and Katan. For S-DES, we examine the classification of the full key set, and the results are better than a random guess. However, we found that it is difficult to apply the same classification model beyond 2-round Speck. We also demonstrate that DL models trained under a known-plaintext scenario can successfully recover the random key of S-DES. However, the same method has been less successful when applied to modern ciphers Speck, Simeck, and Katan. The ciphers Simeck and Katan are further investigated using the DL models but with a text-based key. This application found the linear approximations between the plaintext–ciphertext pairs and the text-based key.


2020 ◽  
Author(s):  
Nicos Maglaveras ◽  
Georgios Petmezas ◽  
Vassilis Kilintzis ◽  
Leandros Stefanopoulos ◽  
Andreas Tzavelis ◽  
...  

BACKGROUND Electrocardiogram (ECG) recording and interpretation is the most common method used for the diagnosis of cardiac arrhythmias, nonetheless this process requires significant expertise and effort from the doctors’ perspective. Automated ECG signal classification could be a useful technique for the accurate detection and classification of several types of arrhythmias within a short timeframe. OBJECTIVE To review current approaches using state-of-the-art CNNs and deep learning methodologies in arrhythmia detection via ECG feature classification techniques and propose an optimised architecture capable of different types of arrhythmia diagnosis using publicly existing annotated arrhythmia databases from the MIT-BIH databases available at PHYSIONET (physionet.org) . METHODS A hybrid CNN-LSTM deep learning model is proposed to classify beats derived from two large ECG databases. The approach is proposed after a systematic review of current AI/DL methods applied in different types of arrhythmia diagnosis using the same public MIT-BIH databases. In the proposed architecture the CNN part carries out feature extraction and dimensionality reduction, and the LSTM part performs classification of the encoded ECG beat signals. RESULTS In experimental studies conducted with the MIT-BIH Arrhythmia and the MIT-BIH Atrial Fibrillation Databases average accuracies of 96.82% and 96.65% were noted respectively. CONCLUSIONS The proposed system can be used for arrhythmia diagnosis in clinical and mHealth applications managing a number of prevalent arrhythmias such as VT, AFIB, LBBB etc. The capability of CNNs to reduce the ECG beat signal’s size and extract its main features can be effectively combined with the LSTMs’ capability to learn the temporal dynamics of the input data for the accurate and automatic recognition of several types of cardiac arrhythmias. CLINICALTRIAL Not applicable.


2019 ◽  
Vol 9 (21) ◽  
pp. 4500 ◽  
Author(s):  
Phung ◽  
Rhee

Research on clouds has an enormous influence on sky sciences and related applications, and cloud classification plays an essential role in it. Much research has been conducted which includes both traditional machine learning approaches and deep learning approaches. Compared with traditional machine learning approaches, deep learning approaches achieved better results. However, most deep learning models need large data to train due to the large number of parameters. Therefore, they cannot get high accuracy in case of small datasets. In this paper, we propose a complete solution for high accuracy of classification of cloud image patches on small datasets. Firstly, we designed a suitable convolutional neural network (CNN) model for small datasets. Secondly, we applied regularization techniques to increase generalization and avoid overfitting of the model. Finally, we introduce a model average ensemble to reduce the variance of prediction and increase the classification accuracy. We experiment the proposed solution on the Singapore whole-sky imaging categories (SWIMCAT) dataset, which demonstrates perfect classification accuracy for most classes and confirms the robustness of the proposed model.


2020 ◽  
Vol 12 (1) ◽  
pp. 90-108
Author(s):  
Mahmoud Kalash ◽  
Mrigank Rochan ◽  
Noman Mohammed ◽  
Neil Bruce ◽  
Yang Wang ◽  
...  

In this article, the authors propose a deep learning framework for malware classification. There has been a huge increase in the volume of malware in recent years which poses serious security threats to financial institutions, businesses, and individuals. In order to combat the proliferation of malware, new strategies are essential to quickly identify and classify malware samples. Nowadays, machine learning approaches are becoming popular for malware classification. However, most of these approaches are based on shallow learning algorithms (e.g. SVM). Recently, convolutional neural networks (CNNs), a deep learning approach, have shown superior performance compared to traditional learning algorithms, especially in tasks such as image classification. Inspired by this, the authors propose a CNN-based architecture to classify malware samples. They convert malware binaries to grayscale images and subsequently train a CNN for classification. Experiments on two challenging malware classification datasets, namely Malimg and Microsoft, demonstrate that their method outperforms competing state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document