New Data Hiding Algorithm in MATLAB Using Encrypted Secret Message

Author(s):  
Agniswar Dutta ◽  
Abhirup Kumar Sen ◽  
Sankar Das ◽  
Shalabh Agarwal ◽  
Asoke Nath
Keyword(s):  
2021 ◽  
Vol 11 (15) ◽  
pp. 6741
Author(s):  
Chia-Chen Lin ◽  
Thai-Son Nguyen ◽  
Chin-Chen Chang ◽  
Wen-Chi Chang

Reversible data hiding has attracted significant attention from researchers because it can extract an embedded secret message correctly and recover a cover image without distortion. In this paper, a novel, efficient reversible data hiding scheme is proposed for absolute moment block truncation code (AMBTC) compressed images. The proposed scheme is based on the high correlation of neighboring values in two mean tables of AMBTC-compressed images to further losslessly encode these values and create free space for containing a secret message. Experimental results demonstrated that the proposed scheme obtained a high embedding capacity and guaranteed the same PSNRs as the traditional AMBTC algorithm. In addition, the proposed scheme achieved a higher embedding capacity and higher efficiency rate than those of some previous schemes while maintaining an acceptable bit rate.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yuan-Yu Tsai

This study adopts a triangle subdivision scheme to achieve reversible data embedding. The secret message is embedded into the newly added vertices. The topology of added vertex is constructed by connecting it with the vertices of located triangle. For further raising the total embedding capacity, a recursive subdivision mechanism, terminated by a given criterion, is employed. Finally, a principal component analysis can make the stego model against similarity transformation and vertex/triangle reordering attacks. Our proposed algorithm can provide a high and adjustable embedding capacity with reversibility. The experimental results demonstrate the feasibility of our proposed algorithm.


2022 ◽  
Author(s):  
Prabhas Kumar Singh ◽  
Biswapati Jana ◽  
Kakali Datta

Abstract In 2020, Ashraf et al. proposed an interval type-2 fuzzy logic based block similarity calculation using color proximity relations of neighboring pixels in a steganographic scheme. Their method works well for detecting similarity, but it has drawbacks in terms of visual quality, imperceptibility, security, and robustness. Using Mamdani fuzzy logic to identify color proximity at the block level, as well as a shared secret key and post-processing system, this paper attempts to develop a robust data hiding scheme with similarity measure to ensure good visual quality, robustness, imperceptibility, and enhance the security. Further, the block color proximity is graded using an interval threshold. Accordingly, data embedding is processed in the sequence generated by the shared secret keys. In order to increase the quality and accuracy of the recovered secret message, the tampering coincidence problem is solved through a post-processing approach. The experimental analysis, steganalysis and comparisons clearly illustrate the effectiveness of the proposed scheme in terms of visual quality, structural similarity, recoverability and robustness.


2017 ◽  
Vol 67 (5) ◽  
pp. 551 ◽  
Author(s):  
Kunjan Pathak ◽  
Manu Bansal

<p>Steganography differs from other data hiding techniques because it encodes secret message inside cover object in such a way that transmission of secret message also remains a secret. Widespread usage of digital images, lower computational complexity and better performance makes spatial domain steganographic algorithms well suited for hardware implementation, which are not very frequent. This work tries to implement a modern steganalysis resistant LSB algorithm on FPGA based hardware. The presented work also optimises various operations and elements from original one third probability algorithm with respect to hardware implementation. The target FPGA for the implementation is Xilinx SP605 board (Spartan 6 series XC6SLX45T FPGA). Stego images obtained by the implementation have been thoroughly examined for various qualitative and quantitative aspects, which are found to be at par with original algorithm.</p>


2020 ◽  
Vol 39 (3) ◽  
pp. 2977-2990
Author(s):  
R. Anushiadevi ◽  
Padmapriya Praveenkumar ◽  
John Bosco Balaguru Rayappan ◽  
Rengarajan Amirtharajan

Digital image steganography algorithms usually suffer from a lossy restoration of the cover content after extraction of a secret message. When a cover object and confidential information are both utilised, the reversible property of the cover is inevitable. With this objective, several reversible data hiding (RDH) algorithms are available in the literature. Conversely, because both are diametrically related parameters, existing RDH algorithms focus on either a good embedding capacity (EC) or better stego-image quality. In this paper, a pixel expansion reversible data hiding (PE-RDH) method with a high EC and good stego-image quality are proposed. The proposed PE-RDH method was based on three typical RDH schemes, namely difference expansion, histogram shifting, and pixel value ordering. The PE-RDH method has an average EC of 0.75 bpp, with an average peak signal-to-noise ratio (PSNR) of 30.89 dB. It offers 100% recovery of the original image and confidential hidden messages. To protect secret as well as cover the proposed PE-RDH is also implemented on the encrypted image by using homomorphic encryption. The strength of the proposed method on the encrypted image was verified based on a comparison with several existing methods, and the approach achieved better results than these methods in terms of its EC, location map size and imperceptibility of directly decrypted images.


2020 ◽  
Vol 32 ◽  
pp. 02002
Author(s):  
Pooja Shetye ◽  
Srushti Varekar ◽  
Manali Zajam ◽  
Monika Pawar ◽  
Sujata Kadam

In today’s world, the internet is a platform, where large amount of data can be obtained and transferred. Different technologies and internet access are used to transfer the data which can be accessed by authorized and unauthorized users.The major drawback of these technologies are that any unauthorized person can access it.Hence encryption and decryption is perform on Message/Data .In encryption the plain text/image is converted into cipher text/image.The technique of data hiding is used to hide the data that has to be transferred from the source to the destination.The process involves insertion of secret message in the cover image which is encrypted with the help of AES algorithm. This algorithm generates public/private key. All this process can be performed in lossless and reversible manner.


2020 ◽  
Vol 9 (1) ◽  
pp. 2042-2045

Nowadays, the information security has been the key factor in communications, computer systems, electronic commerce and data sharing. One of the well-known methods for procuring the security of shared information using carrier files is steganography. The carrier file can be discrete such as image, text, audio and video etc. Digital images are the most commonly used format among those due to the high capacity and availability frequency. The hidden data is stored in an indistinct carrier in image steganography, i.e the digital image is used as a cover image to mask the secret message known as stego image. Cryptography can be then adapted for increasing the security of the stego image. A zig-zag MSB-LSB slicing based steganographic algorithm is proposed in this paper for concealing a secret image in a cover image. Power report and device utilization summary of the algorithm is calculated and the output is demonstrated on the VGA screen using BASYS3 Field Programmable Gate Array (FPGA).


Author(s):  
Tanmoy Halder ◽  
Sunil Karforma ◽  
Rupali Halder

In this chapter a novel data hiding approach by combining Particle Swarm Optimization (PSO) and Pixel Value Difference (PVD) has been proposed. Pixel-Value-Difference (PVD) method of Steganography uses the difference between pixels within an image to hide secret data. The proposed method is a block-based adaptive steganographic approach, which selects M×N block of pixels from cover image and embed secret message within pixels using Pixel-value-difference and LSB substitution method. PSO is used to select most appropriate areas within the image for hiding secret information. Results obtained using the approach show that distortion due to data embedding is negligible. The proposed approach is compared with existing methods in terms of bits per pixel. This method could be applied to hide any digital secret data for secure transfer over internet.


Author(s):  
Al Hussien Seddik Saad ◽  
Abdelmgeid Amin Ali

Nowadays, due to the increasing need for providing secrecy in an open environment such as the internet, data hiding has been widely used. Steganography is one of the most important data hiding techniques which hides the existence of the secret message in cover files or carriers such as video, images, audio or text files. In this chapter; steganography will be introduced, some historical events will be listed, steganography system requirements, categories, classifications, cover files will be discussed focusing on image and video files, steganography system evaluation, attacks, applications will be explained in details and finally last section concludes the chapter.


2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Ivan Jonathan ◽  
Albert Yeusiawan Haryono ◽  
Kevin Leonardi

In today's technological era, the concealment of sensitive information is the concern of many people. Because the information is often shared and discussed through a very commonly used communication medium. Steganography is one technique to hide a secret message into a file that has a larger size. In this paper, we will discuss the methods that can be used in steganography, especially the method of Least Significant Bit. Keywords: Steganography, Data Hiding, Steganography Algorithm, Least Significant Bit.


Sign in / Sign up

Export Citation Format

Share Document