A figure of merit for oscillator-based thin-film circuits on plastic for high-performance signaling, energy harvesting and driving of actuation circuits

Author(s):  
Warren Rieutort-Louis ◽  
Liechao Huang ◽  
Yingzhe Hu ◽  
Josue Sanz-Robinson ◽  
Sigurd Wagner ◽  
...  
Author(s):  
Ziyi Liu ◽  
Shinya Yoshida ◽  
Shuji Tanaka

Abstract In this study, we propose an annular-shaped piezoelectric micromachined ultrasonic transducer (pMUT) based on a Pb(Zr,Ti)O3-based monocrystalline thin film. This pMUT is expected to increase the resonance frequency while maintaining displacement sensitivity, making it superior to an island-shaped pMUT, which is a conventional design. To demonstrate the validity of this assumption, annular- and island-shaped pMUTs with a 60-μm-diameter diaphragm were prototyped and characterized. As a result, the annular-shaped pMUT exhibited a resonance frequency of 11.9 MHz, a static displacement sensitivity of 2.35 nm/V and a transmitting figure-of-merit (FOM) of 28 nm∙MHz/V. On the other hand, the island-shaped pMUT exhibited a resonance frequency of 9.6 MHz and a static displacement of 2.5 nm/V and an FOM of 24 nm∙MHz/V. Therefore, the annular-shaped pMUT was experimentally demonstrated to provide a higher FOM compared to the island-shaped pMUT. In addition, the annular-shaped pMUT with the optimal dimensions is found to be able to keep a relatively large fabrication margin. This is an advantageous point for the practical device fabrication. We believe this design has a potential to become a standard design for high-performance pMUT devices.


Author(s):  
Shiyuan Liu ◽  
Zhuomin Zhang ◽  
Yao Shan ◽  
Ying Hong ◽  
Fatma Farooqui ◽  
...  

High-performance piezoelectric thin films generally contain toxic lead that limits the application scenarios especially on wearable and medical devices. Alternative lead-free piezoelectric materials such as Ba0.85Ca0.15-Zr0.1Ti0.9O3 (BCZT) have been proved...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Felipe Gerlein ◽  
Jaime Alberto Benavides-Guerrero ◽  
Sylvain G. Cloutier

AbstractOn the long road towards low-cost flexible hybrid electronics, integration and printable solar energy harvesting solutions, there is an urgent need for high-performance transparent conductive electrodes produced using manufacturing-ready techniques and equipment. In recent years, randomly-distributed metallic nanowire-based transparent mesh electrodes have proven highly-promising as they offer a superb compromise between high performances and low fabrication costs. Unfortunately, these high figure-of-merit transparent mesh electrodes usually rely heavily on extensive post-deposition processing. While conventional thermal annealing yields good performances, it is especially ill-suited for deposition on low-temperature substrates or for high-throughput manufacturing solutions. Similarly, laser-induced annealing severely limits the processing time for electrodes covering large surfaces. In this paper, we report the fabrication of ultra high-performance silver nanowires-based transparent conductive electrodes fabricated using optimized manufacturing-ready ultrafast photonic curing solutions. Using conventional indium tin oxide (ITO) as our benchmark for transparent electrodes, we demonstrate a 2.6–2.7 $$\times $$ × performance gain using two different figure-of-merit indicators. Based on these results, we believe this research provides an ideal manufacturing-ready approach for the large-scale and low-cost fabrication of ultra high-performance transparent electrodes for flexible hybrid electronics and solar-energy harvesting applications.


2018 ◽  
Vol 734 ◽  
pp. 121-129 ◽  
Author(s):  
Xiaodong Wang ◽  
Fanling Meng ◽  
Tongzhou Wang ◽  
Changcun Li ◽  
Haitong Tang ◽  
...  

Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

1999 ◽  
Author(s):  
Eli Yablonovitch ◽  
Misha Boroditsky ◽  
Rutger Vrijen ◽  
Thomas F. Krauss ◽  
Roberto Coccioli

Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


Sign in / Sign up

Export Citation Format

Share Document