Analysis of Intermittent Control for Triple Active Bridge Converter to Suppress Cross-current

Author(s):  
Takanobu Ohno ◽  
Nobukazu Hoshi
1986 ◽  
Vol 51 (11) ◽  
pp. 2489-2501
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

A model is derived for a multi-stage crystallization with cross-current flows of the solution and the crystals being purified. The purity of the product is compared with that achieved in the countercurrent arrangement. A suitable function has been set up which allows the cross-current and countercurrent flow models to be compared and reduces substantially the labour of computation for the countercurrent arrangement. Using the recrystallization of KAl(SO4)2.12 H2O as an example, it is shown that, when the cross-current and countercurrent processes are operated at the same output, the countercurrent arrangement is more advantageous because its solvent consumption is lower.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 988
Author(s):  
Pengju Duan

The paper is devoted to studying the exponential stability of a mild solution of stochastic differential equations driven by G-Brownian motion with an aperiodically intermittent control. The aperiodically intermittent control is added into the drift coefficients, when intermittent intervals and coefficients satisfy suitable conditions; by use of the G-Lyapunov function, the p-th exponential stability is obtained. Finally, an example is given to illustrate the availability of the obtained results.


2020 ◽  
Vol 34 (28) ◽  
pp. 2050309
Author(s):  
Tao You ◽  
Hailun Zhang ◽  
Mingyu Yang ◽  
Xiao Wang ◽  
Yangming Guo

In biological systems, gene expression is an important subject. In order to clarify the specific process of gene expression, mathematical tools are needed to simulate the process. The Boolean network (BN) is a good mathematical tool. In this paper, we study a Boolean network with intermittent perturbations. This is of great significance for studying genetic mutations in bioengineering. The expression of genes in the internal system of a living being is a very complicated process, and it is clear that the process is trans-ageal for humans. Through the intermittent control and pulse control of the BN, we can obtain the trajectory of gene expression better and faster, which will provide a very important theoretical basis for our next research.


2011 ◽  
Vol 64 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Yasuhisa Omura ◽  
Azuma Yu ◽  
Yoshimasa Yoshioka ◽  
Kyota Fukuchi ◽  
Daishi Ino

BMJ Open ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. e017003 ◽  
Author(s):  
Nicolas Marjanovic ◽  
Denis Frasca ◽  
Karim Asehnoune ◽  
Catherine Paugam ◽  
Sigismond Lasocki ◽  
...  

IntroductionSevere trauma represents the leading cause of mortality worldwide. While 80% of deaths occur within the first 24 hours after trauma, 20% occur later and are mainly due to healthcare-associated infections, including ventilator-associated pneumonia (VAP). Preventing underinflation of the tracheal cuff is recommended to reduce microaspiration, which plays a major role in the pathogenesis of VAP. Automatic devices facilitate the regulation of tracheal cuff pressure, and their implementation has the potential to reduce VAP. The objective of this work is to determine whether continuous regulation of tracheal cuff pressure using a pneumatic device reduces the incidence of VAP compared with intermittent control in severe trauma patients.Methods and analysisThis multicentre randomised controlled and open-label trial will include patients suffering from severe trauma who are admitted within the first 24 hours, who require invasive mechanical ventilation to longer than 48 hours. Their tracheal cuff pressure will be monitored either once every 8 hours (control group) or continuously using a pneumatic device (intervention group). The primary end point is the proportion of patients that develop VAP in the intensive care unit (ICU) at day 28. The secondary end points include the proportion of patients that develop VAP in the ICU, early (≤7 days) or late (>7 days) VAP, time until the first VAP diagnosis, the number of ventilator-free days and antibiotic-free days, the length of stay in the ICU, the proportion of patients with ventilator-associated events and that die during their ICU stay.Ethics and disseminationThis protocol has been approved by the ethics committee of Poitiers University Hospital, and will be carried out according to the principles of the Declaration of Helsinki and the Good Clinical Practice guidelines. The results of this study will be disseminated through presentation at scientific conferences and publication in peer-reviewed journals.Trial registrationClinical TrialsNCT02534974


2021 ◽  
Vol 91 (7) ◽  
pp. 751-772
Author(s):  
Roberto Tinterri ◽  
Andrea Civa

ABSTRACT The origin of laterally accreted deposits in ancient deep marine successions is often controversial. Indeed, not always do these features imply the occurrence of meanders or high-sinuosity turbidite channels, but they can be generated by other causes, such as sediment-gravity-flow dynamics controlled by the morphology of tectonically confined mini-basins. This work discusses laterally accreted deposits composed of sharp-based, normally graded beds in a very small tectonically controlled mini-basin. These beds, characterized by a well-defined asymmetrical cross-current facies tract, form well-developed lateral-accretion surfaces dipping in directions ranging between W and SW, and perpendicular to the paleocurrents directed towards the N. For this reason, these deposits have always been interpreted as point bars related to meandering channels. A new detailed stratigraphic framework and facies analysis have led to an alternative interpretation, namely that these deposits record lateral deflections of small volume, longitudinally segregated turbidite dense flows against a structurally controlled morphological high. This interpretation is also supported by a comparison to other tectonically controlled turbidite systems that are characterized by higher degrees of efficiency but show similar laterally accreted deposits and cross-current facies tracts.


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guoda Wang ◽  
Ping Li ◽  
Yumei Wen ◽  
Zhichun Luo

Purpose Existing control circuits for piezoelectric energy harvesting (PEH) suffers from long startup time or high power consumption. This paper aims to design an ultra-low power control circuit that can harvest weak ambient vibrational energy on the order of several microwatts to power heavy loads such as wireless sensors. Design/methodology/approach A self-powered control circuit is proposed, functioning for very brief periods at the maximum power point, resulting in a low duty cycle. The circuit can start to function at low input power thresholds and can promptly achieve optimal operating conditions when cold-starting. The circuit is designed to be able to operate without stable DC power supply and powered by the piezoelectric transducers. Findings When using the series-synchronized switch harvesting on inductor circuit with a large 1 mF energy storage capacitor, the proposed circuit can perform 322% better than the standard energy harvesting circuit in terms of energy harvested. This control circuit can also achieve an ultra-low consumption of 0.3 µW, as well as capable of cold-starting with input power as low as 5.78 µW. Originality/value The intermittent control strategy proposed in this paper can drastically reduce power consumption of the control circuit. Without dedicated cold-start modules and DC auxiliary supply, the circuit can achieve optimal efficiency within one input cycle, if the input signal is larger than voltage threshold. The proposed control strategy is especially favorable for harvesting energy from natural vibrations and can be a promising solution for other PEH circuits as well.


Sign in / Sign up

Export Citation Format

Share Document