scholarly journals Finite Element-based Multi-objective Design Optimization of IPM Considering Saturation Effects for Constant Power Region of Operation

Author(s):  
Qingqing Ma ◽  
Ayman EL-Refaie
2012 ◽  
Vol 184-185 ◽  
pp. 565-569 ◽  
Author(s):  
Peng Xing Yi ◽  
Li Jian Dong ◽  
Yuan Xin Chen

In order to improve the reliability of a planet carrier, a simulation method based on multi-objective design optimization was developed in this paper. The objective of the method was to reduce the stress concentration, the deformation, and the quality of the planet carrier by optimizing the structure dimension. A parametric finite element model, which enables a good understanding of how the parameters affect the reliability of planet carrier, was established and simulated by ANSYS-WORKBENCH. The efficiency of the design optimization was improved by using a polynomials response surface to approximate the results of finite element analysis and a screening algorithm to determine the direction of optimization. Furthermore, the multi-objective optimization was capable of finding the global minimum results in the use of the minimum principle on the response surface. Computer simulation was carried out to verify the validity of the presented optimization method, by which the quality and the stability of the planet carrier were significantly reduced and improved, respectively. The methodology described in this paper can be effectively used to improve the reliability of planet carrier.


2015 ◽  
Vol 727-728 ◽  
pp. 660-665
Author(s):  
Shun Hsyung Chang ◽  
Fu Tai Wang ◽  
Jiing Kae Wu ◽  
Sergey N. Shevtsov ◽  
Igor V. Zhilyaev ◽  
...  

The paper presents some results of multi-objective optimization for the multilayered membrane-type piezoceramic MEMS based transducers with perforated active PZT and intermediate diaphragms, covered by the protective plates, and a vacuum chamber. An influence of the protective plate elastic and viscous properties, the dimensions and the relative areas of the perforated holes on the sensitivity’s frequency response of the hydrophone was studied for the broadening and equalizes the operating frequency band. We optimize the key design’s parameters using the Pareto approach with the finite element (FE) model of coupled piezoelectric-acoustic problem for the hydrophone.


2016 ◽  
Vol 28 (7) ◽  
pp. 862-877 ◽  
Author(s):  
Darren J Hartl ◽  
Geoffrey J Frank ◽  
Jeffery W Baur

This work addresses the multi-fidelity analysis-driven design of a thermal transport system based on the flow of liquid metal through a structural laminate as induced by a solid-state magneto-hydro-dynamic (MHD) pump. A full three-dimensional model of the thermal transport system is both simplified to a reduced-order algebraic model, which correctly captures trends in the global system response, and alternatively implemented in an finite element framework, which captures essential global and local aspects of the system response not attainable via reduced-order modeling. The predictions of each model are validated against previously published experimental data. It is shown in detail for the first time in the context of MHD systems that a multi-fidelity approach to the multi-objective design optimization problem can leverage both the speed of the algebraic model and the accuracy of the finite element model, leading to effective predictions of optimal system designs in a reasonable amount of time. A relatively new algorithm for multi-objective and parameterized Pareto optimization is employed, and a clear path of continued development is identified.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Sign in / Sign up

Export Citation Format

Share Document