Reliability assessment of a high performance flip-chip BGA package (organic substrate based) using finite element analysis

Author(s):  
D.Y.R. Chong ◽  
R. Kapoor ◽  
A.Y.S. Sun
2013 ◽  
Vol 671-674 ◽  
pp. 1025-1028
Author(s):  
Dong Ku Shin ◽  
Kyungsik Kim

The ultimate compressive strengths of high performance steel (HPS) plate system stiffened longitudinally by closed stiffeners have been investigated by the nonlinear finite element analysis. Both conventional and high performance steels were considered in models following multi-linear strain hardening constitutive relationships. Initial geometric imperfections and residual stresses were also incorporated in the analysis. Numerical results have been compared to compressive strengths from Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205. It has been found that although use of Eurocode 3 EN 1993-1-5 and FHWA-TS-80-205 may lead to highly conservative design strengths when very large column slenderness parameters are encountered


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Author(s):  
Vikram Venkatadri ◽  
Mark Downey ◽  
Xiaojie Xue ◽  
Dipak Sengupta ◽  
Daryl Santos ◽  
...  

System-On-Film (SOF) module is a complex integration of a fine pitch high density die and surface mounted discrete devices on a polyimide (PI) film laminate. The die is connected to the film using a thermo-compression flip-chip bonding (TCB) process which is capable of providing a very high density interconnect at less than 50um pitch. Several design and bonding parameters have to be controlled in order to achieve a reliable bond between the Au bumps on the die and the Sn plated Cu traces on the PI film. In the current work, the TCB process is studied using Finite Element Analysis (FEA) to optimize the design parameters and assure proper process margins. The resultant forces acting on the bump-to-trace interfaces are quantified across the different potential geometrical combinations. Baseline simulations showed higher stresses on specific bump locations and stress gradients acting on the bumps along the different sides of the die. These observations were correlated to both the failures and near failures on the actual test vehicles. Further simulations were then utilized to optimize and navigate design tradeoffs at both the die and flexible substrate design levels for a more robust design solution. Construction analysis performed on parts built using optimized design parameters showed significant improvements and correlated well with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document