Improved Damage Modeling for Solder Joints under Combined Vibration and Temperature Cycling Loading

Author(s):  
Robert Hohne ◽  
Karsten Meier ◽  
Abhijit Dasgupta ◽  
David Leslie ◽  
Karl-Heinz Bock
2005 ◽  
Vol 127 (4) ◽  
pp. 466-473 ◽  
Author(s):  
B. L. Chen ◽  
X. Q. Shi ◽  
G. Y. Li ◽  
K. H. Ang ◽  
Jason P. Pickering

In this study, a thermoelectric cooler-based rapid temperature cycling (RTC) testing method was established and applied to assess the long term reliability of solder joints in tape ball grid array (TBGA) assembly. This RTC testing methodology can significantly reduce the time required to determine the reliability of electronic packaging components. A three-parameter Weibull analysis characterized with a parameter of failure free time was used for assembly reliability assessment. It was found that the RTC not only speedily assesses the long-term reliability of solder joints within days, but also has the similar failure location and failure mode observed in accelerated temperature cycling (ATC) test. Based on the RTC and ATC reliability experiments and the modified Coffin-Manson equation, the solder joint fatigue predictive life can be obtained. The simulation results were found to be in good agreement with the test results from the RTC. As a result, a new reliability assessment methodology was established as an alternative to ATC for the evaluation of long-term reliability of electronic packages.


Author(s):  
Hsien-Chie Cheng ◽  
Chin-Yin Yu ◽  
Wen-Hwa Chen

An effective, two-staged global/local finite element (FE) modeling technique is proposed for characterizing the thermal-mechanical behaviors of solder joints in area array type packages under the temperature cycling. It consists of two essential features: the employment of a compact global FE model in the global analysis, and a two-staged, hybrid constitutive modeling strategy for solder materials, which is to apply the elastoplasticity constitutive law for solder joints in the global analysis during the first temperature rise while utilize the viscoelasticity in the rest of periods. To substantiate the proposed modeling technique, a large-scaled, 3-D FE model with a very fine mesh is constructed as a baseline model. The result derived from the proposed approach is then accordingly compared with those of the baseline solution. From these comparing results, it turns out that the proposed 3-D global/local FE modeling technique is an effective mean for simulating the thermal-mechanical behaviors of solder joints.


2020 ◽  
Vol 114 ◽  
pp. 113814
Author(s):  
Jiaxin Yuan ◽  
Sujuan Zhang ◽  
Bo Wan ◽  
Guicui Fu ◽  
Maogong Jiang

2007 ◽  
Vol 4 (3) ◽  
pp. 112-120 ◽  
Author(s):  
John Lau ◽  
Todd Castello ◽  
Dongkai Shangguan ◽  
Walter Dauksher ◽  
Joe Smetana ◽  
...  

In this study, failure analysis of the 1657CCGA package with 95.5wt%Sn3.9wt%Ag0.6wt%Cu and 63wt%Sn37wt%Pb solder pastes on lead-free PCBs with the Entek OSP (organic solderability preservative) surface finish is investigated. Emphasis is placed on determining the failure locations and failure modes of the solder joints of the 1657CCGA assemblies after they have been through 7,000 cycles of temperature cycling.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000109-000114
Author(s):  
Hao Zhang ◽  
Qing-Sheng Zhu ◽  
Zhi-Quan Liu ◽  
Li Zhang ◽  
Hongyan Guo ◽  
...  

Fe-Ni films with compositions of Fe-75Ni, Fe-50Ni, and Fe-30Ni were used as under bump metallization (UBM) to evaluate the interfacial reliability of SnAgCu/Fe-Ni solder joints through ball shear test, high temperature storage, as well as temperature cycling. The shear strength for Fe-75Ni, Fe-50Ni, and Fe-30Ni solder joints after reflow were 42.57, 53.94, 53.98 MPa respectively, which are all satisfied with the requirement of industrialization (>34.3 MPa ). High temperature storage was conducted at 150°C and 200°C respectively. It was found that higher Fe content in Fe-Ni layer had the ability to inhibit the mutual diffusion at interface region at 150°C, and the growth speed of intermetallic compound (IMC) decreased with the increase of Fe concentration. When stored at 200°C, the thickness of IMC would reach a limitation for all these three films after 4 days, and cracks occurred at the interface between IMC and Fe-Ni layer. Temperature cycling tests revealed that SnAgCu/Fe-50Ni solder joint had the lowest failure rate (less than 10%), which has the best interfacial reliability among three compositions.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000409-000417 ◽  
Author(s):  
Natalja Schafet ◽  
Bruno Schrempp ◽  
Manfred Spraul ◽  
Ulrich Becker ◽  
Herbert Güttler

PBGAs with SnPb and SnAgCu (SAC) solder joints were stressed with temperature cycles on board- and system-level. A significant influence of the different solder materials on the location of the most damaged PBGA solder balls was observed in the experiment. The reason for this experimental finding was investigated and explained by FE–simulation. The simulations of the PBGAs were done on package-, board- and system-level (PCB within a metal housing). For the system level simulation a 2-step sub-model technique described in [1] was used. Through such an approach the transient PCB deformation and the transient temperature field within the ECU-housing can be incorporated into a creep simulation of the PBGA solder joints. The creep results for both SnPb and SnAgCu solder joints from the board- and system-level simulation were compared. The calculated damage factor due to the ECU-housing influence is different for PBGA with SnPb and SAC solder joints. The simulation results were validated step by step with measurements and experiments: warpage of the non-soldered PBGA, mechanical strain and temperature on the mounted PCB, crack length evaluation of all PBGA solder joints.


Sign in / Sign up

Export Citation Format

Share Document